

Project Overview

.

ARCADIA Project - Consortium

Call: H2020-ICT-2014-1/ICT-09 - Tools and Methods for Software Development

Start date: 01/01/2015

End date: 31/12/2017

Duration: 36 months

Reference: GA no 645372

Budget: 3,543,864 €

Funding: 3,543,864 €

NUI Galway OÉ Gaillimh	Insight Centre for Data Analytics, National University of Ireland, Galway	Ireland		
	Stiftelsen SINTEF	Norway		
Refer	Technische Universität Berlin	Germany		
cnit	Consorzio Nazionale Interuniversitario per le Telecomunicazioni	Italy		
Univerza <i>v Ljubijant</i>	Univerza v Ljubljani	Slovenia		
UBITECH ubiquitous solutions	UBITECH	Greece		
Contractions	WINGS ICT Solutions Information & Communication Technologies EPE	Greece		
Maggioli	MAGGIOLI SPA	Italy		
Additess Acceleration	ADITESS Advanced Integrated Technology Solutions and Services Ltd	Cyprus		

Evolving applications requirements

- Application requirements are changing
 - horizontal scalability;
 - elasticity;
 - adaptability;
 - resiliency;
 - fault-tolerance characteristics.
- The design of reactive systems that are able to adapt based on their operational environment conditions is required.

Software engineering approaches

- Design of reactive systems that are able to adapt based on their operational environment conditions.
- Include more "context-awareness" into applications and services.
- Independently orchestratable software components.
- Development and operations teams have to work closely together.

Network Softwarization and Programmable Infrastructure

- Novel virtualisation technologies.
- Packaging of software components in virtual machines (VMs), containers or unikernels.
- Network softwarization: providing network functionalities via software
 - Network Function Virtualization (NFV): service chains consisted of virtual network functions;
 - Software Defined Networking (SDN): network control directly programmable and underlying infrastructure abstracted for applications and network services.

Need for alignment

- Novel software engineering approaches.
- Solutions for optimally deploying and managing applications.

ARCADIA in a nutshell...

DISTRIBUTED APPS DEVELOPMENT ENVIRONMENT

Design and develop microservices using ARCADIA libraries. Define app-oriented metrics. Reconfigurable-by-design apps.

POLICY-AWARE ORCHESTRATION

Optimal app deployment using meta-heuristic algorithms. Enable real-time policy enforcement. ETSI NFV compliant.

۲	

MULTI DATACENTER EXECUTION MIDDLEWARE

Exploit unikernel stacks. Support multi-IaaS scenarios. OpenStack-ready.

COMPONENT & APPLICATION DISCOVERY

Compose microservices-based applications. Discover. Reuse. Deploy.

Arcadia Context Model

Software Development in ARCADIA

Annotations are a form of metadata that provide data about a program that is not part of the program itself.

@ArcadiaMetric

(name="averageProcessingTime",

description = "URL hashing algorithm performance",

unitofmeasurement = "msec",

valuetype = ValueType.SingleValue,

maxvalue = "6000",

minvalue = "1",

higherisbetter = false)

Web-based Development Environment

- ARCADIA IDE plug-in is integrated with the latest version of Eclipse Che that is the browser-based, cloud version of the classic Eclipse.
- Through the plug-in, developers can:
 - manage their previously generated API keys;
 - have a pre-compile validation of the ARCADIA annotations and developed microservices;
 - submit their code to the platform.

Component and Service Graph Repositories and Composer

- Provide access to components developed within the Web-based IDE.
- View components details (configuration details, chainable parameters, metrics)
- Provide access to set of available and running service graphs.
- View set of components per graph.
- Manage service graphs (deploy, undeploy, monitor)

ARCADIA		© Dashboard	C Account	← Logout (arcadia)				
NU	/ component / uploaded							
Dashboard	\leftarrow Components	🖽 ARCADIA				S Dashboard	Account	
Applications	Uploaded components							
Components	⊕ Uploaded	© Dashboard	MENU / application / template					
Policies	arcadia/DummyLeaf 1.0.0	4 Applications	Application Temple	IONS lates				
Resources	A dummy leaf component	🔅 Components	Running - Ter	mplates				
Activity	Tags dummy server	J Policies						
		Resources	arcadia/dummyg DummyGraph3	jraph_test2			4 Deploy	
Launch IDE [2	arcadia/DummyRoot 1.0.0 A dummy root component	≡ Activity	Components Dum	nmyRoot, DummyLeaf2				
Users	Tags dummy client	🗘 Launch IDE [🗷	arcadia/sample_	application			4 Deploy	
		ADMIN	SampleApplication					
		Lusers	Components Com	nponent1, Component2,	Component3			

Policies Enforcement Mechanisms

- Policies enforcement during deployment (optimization engine) and runtime (rule based management system).
- During runtime:
 - Design and apply policies for runtime management of service graphs.
 - Context-aware execution of components and graphs taking into account conditions in the deployed ecosystem.
 - Assure QoS and QoE levels to end users.
 - Prioritize services/applications provision on behalf of the Service Providers.

Policies Scope Overview

- A policy may be associated with a service graph and applied during runtime.
- Set of actions for:
 - Component lifecycle management
 - Manage component configuration parameters/metrics
 - Activate/deactivate virtual functions (e.g. scaling)
 - Manage allocated IaaS resources
 - Trigger alerts
- Conflict resolution based on specification of priorities.

Policies Enforcement Framework

- Follow a continuous match-resolve-act approach.
 - match phase: mapping of the set of applied rules which are satisfied based on the data streams coming from a set of monitoring probes,
 - resolve phase: conflict resolution -if any- among the satisfied rules taking into account the pre-defined salience of each rule,
 - act phase: provision of a set of suggested actions to the orchestration components.
- Data monitoring and management processes are supported through a set of active and passive monitoring probes. Data is transformed to facts.
- Definition of rules per policy is supported through the Policy Editor in a per service graph basis, based on the concepts represented in the Context model.

Policies Enforcement Framework

Optimisation Engine

 Deploying a distributed application to a cloud infrastructure requires assigning and instantiating an execution environment for each software component while illustrating the communication links among them as required.

- Assignment of resources to execution environments and communication links has to :
 - Fulfil **requirements**
 - Satisfy objectives
 - Avoid **policy** violations
- Initial Assignment happens on a request to deploy and operate a new application
- Partial Reassignments <u>per application</u> are triggered during operation on required scaling to cope with workload or on required <u>migration</u> to keep on satisfying requirements.
- Full or Partial Reassignments for <u>one or more applications</u> are triggered for operating HDAs in order to <u>keep satisfying or better satisfy objectives</u> and <u>avoid</u> <u>policy violations</u>.

Implementation Optaplanner

- OptaPlanner is a constraint satisfaction solver. It optimizes business resource planning.
- OptaPlanner is a lightweight, embeddable planning engine. It enables normal Java[™] programmers to solve optimization problems efficiently. Constraints apply on plain domain objects and can reuse existing code.
- OptaPlanner combines sophisticated optimization heuristics and metaheuristics with very efficient score calculation.
- OptaPlanner is open source software (100% pure Java™, runs on any JVM)

ARCADIA Use Cases

Security and Privacy Support in the FI-WARE Platform Use Case

Encrypted VoIP Communications

Remote Patient Monitoring

ARCADIA Use Cases

High Performance Survivable Communications in Distributed IoT Deployments Use Case

ARCADIA Use Cases

Energy Efficiency vs Quality of Service (QoS) trade-off Use Case.

ARCADIA

A novel reconfigurable by design highly distributed applications development paradigm over programmable infrastructure

http://www.arcadia-framework.eu/

https://twitter.com/eu_arcadia

https://www.linkedin.com/groups/6949809

Thank you!!!