
Disclaimer: The ARCADIA project is co-funded by the European Commission under the Horizon 2020 Programme. This document reflects

only authors’ views. EC is not liable for any use that may be done of the information contained therein.

HORIZON H2020-ICT-2014-1

Objective ICT-09-2014: Topics and Methods for Software Development

A novel reconfigurable by design highly distributed applications

development paradigm over programmable infrastructure

 D2.1 - Description of Highly Distributed Applications and Programmable

Infrastructure Requirements

Editors: M. Repetto (CNIT), C. Vassilakis (UBITECH)

Contributors:

P. Gouvas, E. Fotopoulou, A. Zafeiropoulos (UBITECH), L.

Tomasini (CNIT), K. Tsagkaris, N. Koutsouris (WINGS), S.

Kovaci, G. Carella, T. Quang (TUB), A. Rossini (SINTEF), J.

Sterle (UL), S. Siravo (MAGGIOLI), G. Kioumourtzis, L.

Charalampous (ADITESS), L. Porwol (NUIG)

Date: 27/07/2015

Version: 1.00

Status: Final

Workpackage: WP2 – ARCADIA Framework Specifications

Classification: Public

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

2 / 83

ARCADIA Profile

Partners

Insight Centre for Data Analytics, National

University of Ireland, Galway
Ireland

Stiftelsen SINTEF Norway

Technische Universität Berlin Germany

Consorzio Nazionale Interuniversitario
per le Telecomunicazioni

Italy

Univerza v Ljubljani Slovenia

UBITECH Greece

WINGS ICT Solutions Information &
Communication Technologies EPE

Greece

MAGGIOLI SPA Italy

ADITESS Advanced Integrated Technology
Solutions and Services Ltd

Cyprus

Grant Agreement No.: 645372

Acronym: ARCADIA

Title:

A NOVEL RECONFIGURABLE BY DESIGN HIGHLY DISTRIBUTED

APPLICATIONS DEVELOPMENT PARADIGM OVER PROGRAMMABLE

INFRASTRUCTURE

URL: http://www.arcadia-framework.eu/

Start Date: 01/01/2015

Duration: 36 months

http://www.arcadia-framework.eu/

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

3 / 83

Document History

Version Date Author (Partner) Remarks

0.10 15/04/2015
M. Repetto (CNIT), C. Vassilakis

(UBITECH)
Preparation of Table of Contents (ToC)

0.20 10/05/2015
P. Gouvas, E. Fotopoulou, (UBITECH), L.

Tomasini (CNIT), N. Koutsouris
(WINGS), G. Carella (TUB)

Definition of ARCADIA Operational
Environment – Section 2

0.30 30/05/2015

M. Repetto (CNIT), C. Vassilakis, A.
Zafeiropoulos (UBITECH), L. Tomasini

(CNIT), N. Koutsouris (WINGS), G.
Carella, T. Quang (TUB), J. Sterle (UL), S.
Siravo (MAGGIOLI), G. Kioumourtzis, L.

Charalampous (ADITESS), L. Porwol
(NUIG)

Primary description of Use Cases and
SotA – Sections 3 and 4

0.40 10/06/2015

M. Repetto (CNIT), C. Vassilakis, A.
Zafeiropoulos (UBITECH), L. Tomasini

(CNIT), N. Koutsouris (WINGS), G.
Carella, T. Quang (TUB), J. Sterle (UL), S.
Siravo (MAGGIOLI), G. Kioumourtzis, L.

Charalampous (ADITESS), L. Porwol
(NUIG)

Final description of Use Cases and SotA
– Sections 3 and 4

0.50 30/06/2015

M. Repetto (CNIT), C. Vassilakis, P.
Gouvas, E. Fotopoulou (UBITECH), L.

Tomasini (CNIT), N. Koutsouris
(WINGS), G. Carella (TUB), A. Rossini

(SINTEF), J. Sterle (UL), S. Siravo
(MAGGIOLI), G. Kioumourtzis

(ADITESS)

Primary version of requirements –
Section 5

0.50 15/07/2015

M. Repetto (CNIT), C. Vassilakis, P.
Gouvas, E. Fotopoulou (UBITECH), L.

Tomasini (CNIT), N. Koutsouris
(WINGS), G. Carella (TUB), A. Rossini

(SINTEF), J. Sterle (UL), S. Siravo
(MAGGIOLI), G. Kioumourtzis

(ADITESS)

Final version of requirements – Section
5, Editing of Sections 1 and 6, Version

for Internal review

1.00 27/07/2015

M. Repetto (CNIT), C. Vassilakis, P.
Gouvas, E. Fotopoulou, A. Zafeiropoulos

(UBITECH), L. Tomasini (CNIT), K.
Tsagkaris, N. Koutsouris (WINGS), S.
Kovaci, G. Carella, T. Quang (TUB), A.

Rossini (SINTEF), J. Sterle (UL), S.
Siravo (MAGGIOLI), G. Kioumourtzis, L.

Charalampous (ADITESS), L. Porwol
(NUIG)

Update based on comments from
internal review - Final version

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

4 / 83

Executive Summary

This deliverable poses the foundation to start the technical activities in the ARCADIA project. In this

respect, it sets the bases for a common and shared vision of the problem and provides the basic set of

design and implementation guidelines. The purpose for a common vision is to agree on the problem

definition, to share basic knowledge among partners from different fields (mainly software

development, computing and networking), and to identify the main research challenges to be

addressed. The guidelines to drive the project activities are expressed in terms of requirements.

Requirements are meant to drive the design and development process; they are the constraints that

will help the final framework to best match the initial vision and to satisfy the technological

challenges.

The vision of ARCADIA is to provide a novel reconfigurable-by-design Highly Distributed Applications

(HDAs) development paradigm over programmable infrastructure. Given the inability of Highly-

Distributed-Application-Developers to foresee the changes as well as the heterogeneity on the

underlying infrastructure, it is considerable crucial the design and development of novel software

paradigms that facilitate application developers to take advantage of the emerging programmability of

the underlying infrastructure and therefore develop Reconfigurable-by-Design applications. In

parallel, it is crucial to design solutions that are scalable, support high performance, are resilient-to-

failure and take into account the conditions of their runtime environment.

This technical deliverable depicts the general context, identifies relevant actors and technologies, and

sets the main group of requirements that will drive the design of the ARCADIA framework.

The context is defined in terms of operational environment, which includes the relevant technologies

and the roles that are involved in the software development and deployment process. This builds a

reference scenario and enables to set a common terminology to be used by all partners. More in

details, we define the basic terms that characterize the working environment, i.e., Highly Distributed

Applications and Programmable Infrastructure. We state technological assumptions made by the

project, which are used to set industry, backward-compatibility and standard compliance

requirements. We also describe how the ARCADIA paradigm will affect deployment and execution of

both legacy and ARCADIA-compliant applications. This description help understand what are the

critical issues in the whole process, which is the preliminary step to identify system (high-level)

requirements for the ARCADIA framework. Finally, we distinguish the main roles that are involved in

the application lifecycles, starting from its design and implementation, to its deployment and

operation. This description points out what users expect from the ARCADIA framework, thus allowing

the identification of user requirements.

The state of the art briefly reviews solutions that are relevant to ARCADIA design and implementation,

covering the full application provisioning chain, from development to execution. The analysis includes

the software-development process (model-driven paradigms, context-awareness and in-code

annotations), the execution environment (programmable infrastructure like cloud systems and

software-defined networks), deployment and orchestration frameworks (configuration, replication,

horizontal scaling). The state of the art provides a quick reference about current technological trends;

this knowledge help identify what is already available to implement the ARCADIA framework and

what is currently missing to achieve the project objectives. The state of the art settles implementation,

assumption and constraint requirements, imposed by current and upcoming technology.

The visionary scenario is made of several use cases, which together explain how things should be

improved with respect to current practice and what challenges need to be addressed to go beyond the

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

5 / 83

state of the art. Each use case focuses on one or more specific aspects; some use cases address issues

for some ARCADIA roles, whilst other use cases point out the impact on the development process or

the underlying infrastructure. The analysis of the relevant features highlighted by each use case

enables to derive system (high-level) and functional requirements. To this aim, the layout used to

describe each use case is conceived to draw attention to the main implication of each scenario about

research challenges, advances with respect to the current state of the art, and relationships with the

ARCADIA framework. It is worth noting that the indicative use cases described in this document are

only meant to depict the project vision, and will not be implemented.

Different types of requirements are derived by considering the above aspects. Since the purpose of this

document is to drive the following design and implementation stages, the whole set of requirements is

clustered into homogeneous groups targeting different activities strands envisaged by the ARCADIA

framework: distributed software development, programmable infrastructure management,

distributed applications profiling, deployment and orchestration, optimization. The description of each

requirement follows a template that includes a short title, the role it concerns, the full description, any

type of constraint imposed, its priority, the architectural part of the ARCADIA framework it affects, and

possible notes. We use three levels of priority (top, medium, low); the highest priority denotes

requirements that must be satisfied by the framework to meet the original expectations and

objectives, whereas the bottom priority denotes requirements that are desirable to be present but do

not preclude the correct functioning of the system.

The structure of this deliverable is as follows. Section one introduces the main context of the project

and describes the purpose, motivation and role of this document in the ARCADIA framework. Section

two outlines the ARCADIA operational environment by defining the concepts of Highly Distributed

Application and Programmable Infrastructure, by providing an initial view on the main ARCADIA

architectural components, by identifying the main actors and their roles, and by sketching how the

framework works with legacy and novel applications. Section three reviews the current state of the art;

it is organized in three subsections, covering development of distributed applications, programmable

infrastructure and applications profiling, deployment and orchestration. Section four provides a better

understanding of the general problem and the benefits that the ARCADIA framework will bring, by

listing a set of use cases that show how the process of developing and deploying applications could

change and what opportunities will be available through the novel paradigms. Section five lists the

requirements identified so far, to design, develop and operate the ARCADIA framework; it is roughly

organized to reflect the main activities that will be carried out by the consortium, and it distinguishes

among requirements for distributed software development, programmable infrastructure

management and application profiling, deployment, orchestration, optimization, and management.

Finally, section six remarks on the main outcomes from this deliverable and gives recommendations

for the following activities.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

6 / 83

Table of Contents

1 Introduction ... 10

1.1 Purpose and Scope .. 11

1.2 Methodology ... 11

1.3 Relation with other WPs ... 12

2 ARCADIA Operational Environment .. 13

2.1 Highly Distributed Applications Definition ... 13

2.2 Programmable Infrastructure and Applications Hosting Environment Definition 14

2.3 Highly Distributed Applications Deployment and Operation ... 15

2.4 ARCADIA Architectural Components Vision .. 15

2.5 ARCADIA Ecosystem Roles ... 17

3 State of the Art Analysis and Beyond .. 18

3.1 Distributed Software Development Paradigms ... 18

3.1.1 akka .. 20

3.1.2 Quasar ... 21

3.2 Programmable Infrastructure .. 21

3.2.1 Programmable Infrastructure Building Blocks .. 22

3.2.1.1 Application Execution Environment .. 22

3.2.1.2 Application Networking Environment ... 27

3.2.2 Cloud Infrastructure Platforms and Orchestration Frameworks 33

3.2.2.1 Cloud Computing Platforms .. 34

3.2.2.2 SDN/NFV Platforms .. 37

3.2.2.3 Other Orchestration Frameworks .. 39

3.3 Applications Profiling, Deployment and Orchestration .. 40

3.3.1 Application Profiling ... 40

3.3.1.1 Application Profiling, Load testing, Stress testing 41

3.3.1.2 Virtualization overhead .. 41

3.3.1.3 Auto-scaling techniques .. 42

3.3.2 Application deployment and orchestration .. 43

3.3.2.1 Application Scalability ... 44

3.3.2.2 Programmable infrastructure .. 45

3.3.2.3 Highly Distributed Application Embedding (HDAE) problem 46

3.3.2.4 Related Work to the HDA embedding problem 47

3.3.2.5 Deployment Scheduling Approaches in Platforms 50

4 ARCADIA Use Cases ... 51

4.1 Energy Efficient Cloud Management .. 51

4.2 Annotated Networking .. 52

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

7 / 83

4.3 Remote Surveillance .. 53

4.4 Enterprise Networking.. 54

4.5 IoT/Smart Home .. 56

5 Highly Distributed Applications and Programmable Infrastructure

Requirements ... 58

5.1 Distributed Software Development Paradigm Requirements .. 58

5.2 Programmable Infrastructure Management Requirements ... 61

5.3 Distributed Applications Deployment and Orchestration Requirements 69

5.3.1 Distributed Applications Profiling and Optimization Requirements 74

6 Conclusions .. 78

Annex I: References ... 79

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

8 / 83

List of Figures

Figure 1-1: Relationship of D2.1/Task 2.1 with other Tasks in ARCADIA .. 13

Figure 2-1: Highly Distributed Application Indicative Breakdown .. 14

Figure 2-2: ARCADIA Architectural Components Vision .. 16

Figure 3-1: Monolithic vs Microservices Architecture... 18

Figure 3-1: Characteristics according the application running environment .. 23

Figure 3-2: Source [16] LXC versus Docker.. 27

Figure 3-3: SDN architecture .. 28

Figure 3-4: NFF framework architecture .. 30

Figure 3-5: NFV framework break down .. 30

Figure 3-6: Source [34] Floodlight Openflow controller .. 31

Figure 3-7: Source [5] Openstack ... 34

Figure 3-8: Source [38] OpenDaylight architecture.. 37

Figure 3-9: Source [41] OPNFV Arno Overview Diagram... 38

Figure 3-10: Source [73] Virtual Network Embedding (VNE) example ... 47

Figure 3-11: Source [73] Virtual Network Embedding (VNE) example with energy efficiency as

objective .. 47

Figure 3-12: Source [73] An example of reconfiguration in Virtual Network Embedding (VNE) 48

Figure 3-13: Source [84] Virtual Data Centre Embedding (VDCE) example .. 49

Figure 3-14: Source [85] Cloud Application Embedding (CAE) example .. 50

Figure 5-1: Properties of Reactive Systems based on the Reactive Manifesto .. 59

List of Tables

Table 3-1: Source [10] Comparison of popular Hypervisors .. 24

Table 3-2: List of available SDN software switches. ... 32

Table 3-3: List of commercial switches compliant with the OpenFlow protocol ... 32

Table 3-4: List of controllers compliant with the OpenFlow standard. .. 32

Table 3-5: Comparison of Cloud Platforms ... 36

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

9 / 83

Acronyms

API Application Programming Interface

CAE Cloud Application Embedding

DoW Description of Work

HDA Highly Distributed Application

IaaS Infrastructure as a Service

JVM Java Virtual Machine

LXC Linux Container

NFV Network Function Virtualization

NFVI Network Functions Virtualization Infrastructure

NV Network Virtualization

OS Operating System

PM Physical Machine

PoP Point of Presence

QoS Quality of Service

SDN Software Defined Networking

VDCE Virtual Data Centre Embedding

VLAN Virtual Local Area Network

VNE Virtual Network Embedding

VNF Virtual Network Function

VPN Virtual Private Network

WP Work Package

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

10 / 83

1 Introduction

The generalized trend towards massive “softwarization” of processes, devices, services and

infrastructures has pointed out many limitations of the current practice to develop, deploy and run

software applications. In particular, human resources are often overworked with an intrinsic

infrastructural heterogeneity, namely a diversity of the programming frameworks and the execution

environments that are utilized in the application lifecycle. A transition from the ‘intelligent design’

approach, which currently rules software engineering, to meta-design approaches as well as self-

combining software systems has to be realized. To this aim, focus should be given on the design of

software components that have the ability to collaborate in an autonomous and decentralized fashion

[86]. In particular, a set of considerations about quick development times, software re-utilization, data

locality and so forth have brought the concept of Highly Distributed Applications (HDA), which run on a

global heterogeneous infrastructure built on top of the “Future Internet”.

Key drivers that boost this transition are emerging paradigms like virtualization and the availability of

programmable infrastructures. However, the plethora of different solutions and approaches has led to

a thicket of execution environments and their relative configuration artifacts, exacerbating the

difficulty of software engineers to quickly adapting their systems to different run-time contexts.

Following the basic principles under the DevOps approach, an increasing interest has been devoted to

include more “context-awareness” into the very same applications and services, by making them able

to adapt and to adjust their behavior to different run-time environments, relying on the autonomic

provisioning capability allowed by the large availability of programmable infrastructure. However,

this must not turn into an overwhelming configuration burden for developers, rather it should be an

opportunity to exploit the peculiarities of each execution environment and hence to optimize

performance, availability, dependability, security, and cost of the applications.

Under this perspective, the vision of ARCADIA is to provide a novel reconfigurable-by-design Highly

Distributed Applications’ development paradigm over programmable infrastructure. The approach

relies on an extensible Context Model that will assist programmers to take into account the

heterogeneity and peculiarity of the underlying infrastructure, and a Smart Controller that will

undertake the tasks of optimal and dynamic deployment of applications over multiple domains

starting from the instantiation of the Context Model.

This document is the first technical deliverable of the project and is committed to depict the general

context, to identify relevant actors and technologies, and to set the main group of requirements that

will drive the design of the ARCADIA framework. Section one introduces the main context of the

project and describes the purpose, motivation and role of this document in the ARCADIA framework.

Section two outlines the ARCADIA operational environment by defining the concepts of Highly

Distributed Application and Programmable Infrastructure, by providing an initial view on the main

ARCADIA architectural components, by identifying the main actors and their roles, and by sketching

how the framework works with legacy and novel applications. Section three reviews the current state

of the art; it is organized in three subsections, covering development of distributed applications,

programmable infrastructure and applications profiling, deployment and orchestration. Section four

provides a better understanding of the general problem and the benefits that the ARCADIA framework

will bring, by listing a set of use cases that show how the process of developing and deploying

applications could change and what opportunities will be available through the novel paradigms.

Section five lists the requirements identified so far, to design, develop and operate the ARCADIA

framework; it is roughly organized to reflect the main activities that will be carried out by the

consortium, and it distinguishes among requirements for distributed software development,

programmable infrastructure management and application profiling, deployment, orchestration,

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

11 / 83

optimization, and management. Finally, section six remarks on the main outcomes from this

deliverable and gives recommendations for the following activities.

1.1 Purpose and Scope

This document poses the foundation to start the technical activities in the ARCADIA project. In this

respect, it sets the bases for a common and shared vision of the problem and provides the basic set of

design and implementation guidelines.

The purpose for a common vision is to agree on the problem definition, to share basic knowledge

among partners from different fields (mainly software development, computing and networking), and

to identify the main research challenges to be addressed.

The guidelines to drive the project activities are expressed in terms of requirements. Requirements

are meant to drive the design and development process; they are the constraints that will help the

final framework to best match the initial vision and to satisfy the technological challenges.

Requirements show the functional and the non-functional aspects for the particular project and are an

important input to the verification process, since tests should trace back to specific requirements.

1.2 Methodology

The definition of requirements is a critical aspect for every project, since they affect the final outcomes

of the project and its adherence with the initial purposes and specification. To be sure to identify the

right set of requirements, the methodology adopted by ARCADIA has put a great effort to agree on a

common understanding of the main problem addressed by the project. To this aim, the relevant

aspects are the specific context targeted by ARCADIA, the project vision, and the current state of the art.

The content of this document has emerged from various sources:

 the Description of the Action (annex to the Grant Agreement), which describes the main
purpose of the project, the technological context and current practice, open issues and

limitations of current solutions, and the use cases originally proposed to demonstrate the

project;

 the Project Meetings held during the first semester:

o the kick-off meeting in Athens, on January 26th-27th, 2015;

o the 1st plenary meeting in Berlin, on May 19th-20th, 2015;

o periodic virtual meetings, held every two-three weeks on average.

The context is defined in terms of operational environment, which includes the relevant

technologies and the roles that are involved in the software development and deployment process.

This builds a reference scenario and enables to set a common terminology to be used by all partners.

More particularly, we define the basic terms that characterize the working environment, i.e., Highly

Distributed Applications and Programmable Infrastructure. We state technological assumptions made

by the project, which are used to set industry, backward-compatibility and standard compliance

requirements. We also describe how the ARCADIA paradigm will affect deployment and execution of

both legacy and ARCADIA-compliant applications. This description help understand what are the

critical issues in the whole process, which is the preliminary step to identify system (high-level)

requirements for the ARCADIA framework. Finally, we distinguish the main roles that are involved in

the application lifecycles, starting from its design and implementation, to its deployment and

operation. This description points out what users expect from the ARCADIA framework, thus allowing

the identification of user requirements.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

12 / 83

The state of the art briefly reviews solutions that are relevant to ARCADIA design and

implementation, covering the full application provisioning chain, from development to execution. The

analysis includes the software-development process (model-driven paradigms, context-awareness and

in-code annotations), the execution environment (programmable infrastructure like cloud systems

and software-defined networks), deployment and orchestration frameworks (configuration,

replication, horizontal scaling). The state of the art provides a quick reference about current

technological trends; this knowledge help identify what is already available to implement the

ARCADIA framework and what is currently missing to achieve the project objectives. The state of the

art settles implementation, assumption and constraint requirements, imposed by current and

upcoming technology.

The visionary scenario is made of several use cases, which together explain how things should be

improved with respect to current practice and what challenges need to be addressed to go beyond the

state of the art. Each use case focuses on one or more specific aspects; some use cases address issues

for some ARCADIA roles, whilst other use cases point out the impact on the development process or

the underlying infrastructure. The analysis of the relevant features highlighted by each use case

enables to derive system (high-level) and functional requirements. To this aim, the layout used to

describe each use case is conceived to draw attention to the main implication of each scenario about

research challenges, advances with respect to the current state of the art, and relationships with the

ARCADIA framework. It is worth noting that the indicative use cases described in this document are

only meant to depict the project vision, and will not be implemented.

Different types of requirements are derived by considering the above aspects. Since the purpose of

this document is to drive the following design and implementation stages, the whole set of

requirements is clustered into homogeneous groups targeting different activities strands envisaged by

the ARCADIA framework: distributed software development, programmable infrastructure

management, distributed applications profiling, deployment and orchestration, optimization. The

description of each requirement follows a template that includes a short title, the role it concerns, the

full description, any type of constraint imposed, its priority, the architectural part of the ARCADIA

framework it affects, and possible notes. We use three levels of priority (top, medium, low); the

highest priority denotes requirements that must be satisfied by the framework to meet the original

expectations and objectives, whereas the bottom priority denotes requirements that are desirable to

be present but do not preclude the correct functioning of the system.

1.3 Relation with other WPs

This deliverable is the outcome from Task 2.1 – Highly Distributed Application and Programmable

Infrastructure Requirements, and represents the preliminary step towards the ARCADIA framework

specifications (WP2). It builds the ground of knowledge to understand the basic problem statement

and the main guidelines to start the other technical tasks. The vision depicted by the use cases

described in this document is shared with Task 2.3 – Smart Controller Requirements and

Functionalities, to extend the general set of requirements already derived in Task 2.1. Task 2.3

specifically looks at the Smart Controller, because the latter is a cornerstone in the ARCADIA

framework; instead, the scope of this report is more general and takes into consideration the whole

system. This deliverable directly feeds Task 2.2 – Definition of ARCADIA Context Model, and Task 2.4 –

Design of ARCADIA framework. Figure 1-1 positions D2.1 and Task 2.1 in the global ARCADIA

framework, with explicit indication of what tasks are fed by their outputs.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

13 / 83

Figure 1-1: Relationship of D2.1/Task 2.1 with other Tasks in ARCADIA

2 ARCADIA Operational Environment

2.1 Highly Distributed Applications Definition

A Highly Distributed Application (HDA) is defined as a distributed scalable structured system of

software entities constructed to illustrate a network service when implemented to run over a cloud

infrastructure. An HDA is a multi-tier cloud application consisting of application’s tiers chained with

other software entities illustrating network functions applied to the network traffic towards/from and

between application’s tiers. Each software entity provides the ability to horizontally scale (in and out)

during runtime in order to handle the workload using needed resources.

An indicative HDA is depicted in Figure 2-1 that corresponds to a graph that contains a set of tiers

along with a set of functions implemented in the form of Virtual Network Functions (VNFs). It should

be noted that in ARCADIA we are going to adopt the term Virtual Functions (VFs) instead of the term

VNF that is denoted in ETSI Network Function Virtualization (NFV) [26] since we do not only refer to

networking functions but to generic functions. Each element in the graph is accompanied with a set of

characteristics and constraints (e.g. resource capacity constraints, dependencies).

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

14 / 83

Figure 2-1: Highly Distributed Application Indicative Breakdown

2.2 Programmable Infrastructure and Applications Hosting Environment

Definition

With the term programmable infrastructure we refer to the networking, computational and storage

infrastructure with programmable characteristics that is being used for the deployment and operation

of the ARCADIA applications. It should be noted that deployment of the applications will be realized –

in most of the cases- on virtual resources (e.g. virtual machines, Linux containers), while management

of resources will be supported across multiple IaaS (Infrastructure as a Service) environments. In

specific cases, where direct access to hardware is required for management of programmable aspects

of devices, specific bare metal services are going to be supported.

With regards to the deployment/execution environment of the considered applications, we are going

to refer to the following cases:

- applications running on native Operating System (OS) in case of applications running on an OS

of a Physical Machine (PM);

- applications running on a Container in case of applications running on a hosted Container in an
OS of a PM;

- applications running on a Virtual Machine (VM) in case of applications running on the OS of the
VM that is hosted by a hypervisor, and

- applications running in further nested environments (mostly for testing purposes, e.g.

applications running in a Container in an OS of a VM hosted by a hypervisor of a PM).

Illustration of a virtual network among executing environments and middleboxes will be facilitated by

technologies developed in the highly convoluted areas [20] of Network Virtualization (NV), Software

Defined Networking (SDN) and Network Functions Virtualization (NFV).

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

15 / 83

2.3 Highly Distributed Applications Deployment and Operation

In ARCADIA, we support the deployment and operation of:

- ARCADIA applications; applications that are going to be developed following the proposed

software development paradigm,

- Legacy applications; existing applications already available in an executable form, and

- Hybrid applications; applications consisting of application tiers from both the afore-mentioned

cases.

In all the cases, a service chaining graph has to be produced and used for the preparation of the

deployment scripts. The service chaining graph regards a graph denoting the workflow that has to be

realised towards the execution of an application, as already shown in Figure 2-1. Based on the service

chaining graph, each application is broken down into a set of micro-apps or micro-services with

dependencies among each other.

In case of applications that are developed based on the ARCADIA software development paradigm, the

service chaining graph will be partially or fully denoted within the software. Furthermore, a set of

monitoring hooks that are going to be used during the deployment as well as the execution time of the

application for optimisation purposes will be provided. In case of existing applications, the

deployment script has to be created by a DevOps user. In case of hybrid applications, indications for

the service chaining graph may be provided within the software; however the final deployment script

has to be provided by the DevOps user.

Following, the produced deployment script (in automated or manual way) is provided to the ARCADIA

Smart Controller that is responsible for realising the initial deployment and management of the

application during the execution time over the available programmable infrastructure. The

application’s software components –as denoted in the corresponding service chain- are instantiated

on demand. The defined monitoring hooks initiate a set of monitoring functionalities for specific

performance metrics. The status of these metrics trigger re-configurations in the deployed application

based on optimisation objectives (as denoted by application developers, service providers,

infrastructure owners) along with a set of constraints that are considered during the application

deployment and runtime. Resources reservation and release is realized on demand over the

programmable infrastructure.

2.4 ARCADIA Architectural Components Vision

The vision of ARCADIA is to provide a novel reconfigurable-by-design Highly Distributed Applications

(HDAs) development paradigm over programmable infrastructure. An initial version of the ARCADIA

architectural components vision is provided in

Figure 2-2. Based on the architectural approach that is going to be designed, the developer shall be

able to develop infrastructural agnostic applications by following proper development architectural

patterns.

Considering that a developer complies with HDA development patterns, according to the ARCADIA

flow, he/she will use a specific ARCADIA-IDE Plugin in order to provide specific annotations at the

source-level. These annotations will be instantiations of the ARCADIA Context Model. The ARCADIA

Context Model will conceptualize application, configuration and infrastructural aspects that should be

taken under consideration in order for an optimal infrastructural configuration to be defined.

According to the conceptual flow, this optimal configuration should be created and instantiated by the

component which is called Smart Controller.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

16 / 83

The Smart Controller is (among others) the HDA’s on-boarding utility which will undertake the tasks

of i) translating annotations to optimal infrastructural configuration (through the Configuration

Manager) ii) initialize the optimal configuration to the registered programmable resources (through

the Deployment Manager) and iii) react pro-actively to the configuration plan based on the

infrastructural state and the HDA state (through the Autonomic Prediction and Reconfiguration

Engine).

Figure 2-2: ARCADIA Architectural Components Vision

As already stated, the ARCADIA framework aims to radically change the way HDAs are developed, on-

boarded, deployed and managed. After the compilation of an HDA component, the executable will be

on-boarded to the Smart Controller which is the cornerstone of the ARCADIA framework.

Architecturally, its main sub-modules include:

a) an ARCADIA-metadata interpreter which is able to interpret metadata that accompany compiled

executables and produce deployment scripts. The interpretation is crucial because it will affect the

deployment and management lifecycle. The interpretation will guide the Smart Controller’s behaviour

during the entire lifecycle of the HDA.

b) a Programmable Resource-Manager which exposes a specific interface where programmable

resources are registered and managed. Programmable resources can span from configured IaaS

frameworks, programmable physical switching/routing equipment, programmable firewalls,

application servers, modularized software entities (databases, HTTP proxies etc).

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

17 / 83

c) a Configuration and Deployment Manager which will undertake the complex task of mapping

source-code metadata to configuration and infrastructural requirements. These requirements have to

be ‘translated’ in optimal configuration taking under consideration i) the registered resources, ii) their

programmability capabilities and iii) the existing policies.

d) a Unified Monitoring Manager which will rely on proper probes that will be configured during the

deployment phase. Probing is related to active monitoring techniques. Such techniques can be used to

monitor in a near-real-time fashion metrics in multiple levels e.g. OS-level (memory, cores etc),

application-server-level (connection pools, queues, etc) or application-level (heap, stack etc).

However, the Unified Monitoring Manager will also employ passive techniques in order to aggregate

measurements from Resources that cannot be probed; yet they can be interfaced through their custom

API. Indicative examples are switching and routing devices, firewalls etc. Metrics that are measured

using both techniques will be aggregated and used from the “Autonomic Prediction and

Reconfiguration Engine” (analysed below).

e) an Autonomic Prediction and Reconfiguration Engine which will be responsible for pro-active

adjustment of the running configuration based on measurements that derive from the Unified

Monitoring Manager. The ultimate goals of this component are two: i) zero-service disruption ii) re-

assure optimal configuration across time. In order to achieve both of these goals predictive algorithms

will be employed, which will eliminate, as much as possible, false-positives, regarding triggering of re-

configuration.

f) a Distributed Intelligence Engine that undertakes the task of communicating in a peer-to-peer

manner with other Smart Controllers in order to cope with limitations, barriers or run-time problems

that are caused by many reasons such as limited availability of physical Resources, run-time

performance issues etc. Distributed Intelligence is accompanied by many challenges that have to be

confronted. Indicative ones include Security and Trust among Smart-Controllers, Distributed Inference

and Decision making, Lack of Centralized Control etc.

g) a Policy Handling Manager which will be responsible for defining the high level policies on behalf

of the services provider. These policies are by definition multidisciplinary; since they can be affected

by many requirements.

2.5 ARCADIA Ecosystem Roles

Within the ARCADIA ecosystem, the following roles are identified:

- Software Developer: he develops applications based on the ARCADIA software development
paradigm or adapts existing applications in order to incorporate, partially or fully, concepts

based on the ARCADIA software development paradigm.

- DevOps User: he prepares the deployment scripts of existing applications that are not

developed based on the ARCADIA software development paradigm but include set of

monitoring hooks as well as the notion of service chaining. Based on the produced deployment

script, optimal deployment and management of such applications can be supported. For

applications developed based on the ARCADIA software development paradigm, seamless

integration of different kinds of DevOps artifacts is supported, thus the role of DevOps user is

limited (in cases where customizations are required).

- Smart Controller: it deploys the applications over the available programmable infrastructure,
manages the application during the execution time triggering re-configurations where

required based on the defined optimization objectives on behalf of the application developer

and the services provider. It provides a set of monitoring functionalities and mechanisms for

monitoring in real time the parameters that are provided as input to the optimization

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

18 / 83

framework. It also manages the available programmable infrastructure, including the

management of resources that belong to multi-IaaS environments.

- Services Provider: it defines policies and optimization objectives on behalf of the services
provider (e.g. communication services provider, cloud computing services provider). These

policies along with their prioritization are handled by the Smart Controller towards the

deployment/management of applications.

- IaaS Provider: it provides interfaces to the Smart Controller for management of large pools of
compute, storage, and networking resources. Registration of resources can be realized through

a multi-IaaS environment.

- Arcadia Administrator: he develops and maintains software libraries of the ARCADIA
software development paradigm as well as facets of the ARCADIA context model.

- Risk Manager: he identifies emerging risks based on the adoption of ARCADIA-based

solutions and proposes a risk management framework for handling unforeseen events (e.g.

physical disaster events).

3 State of the Art Analysis and Beyond

3.1 Distributed Software Development Paradigms

The evolvement of new software development paradigms is following the need for development of

applications that highly include the notion of modularity, distribution, scalability, elasticity and fault

tolerance. Actually, we refer to an evolution from applications that are based on monolithic

architectures to applications that can be represented as re-active systems composed by micro-

services. Micro-services can be considered as the resulting set of services that arise from the process

of decomposing an application into smaller pieces (Figure 3-1). Furthermore, we refer to applications

that have to be deployed and executed over heterogeneous environments –in terms of underlying

infrastructure and end users devices- as well as applications that have to take into account strict

constraints in terms of performance (e.g. millisecond response time, 100% uptime etc., as also

specified in the 5G networks evolution requirements).

Figure 3-1: Monolithic vs Microservices Architecture1

1 https://devcentral.f5.com/articles/microservices-versus-microsegmentation

https://devcentral.f5.com/articles/microservices-versus-microsegmentation

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

19 / 83

Such an evolution is accompanied with the current trend in the design nature of applications that are

consisted –following an increasing tendency- of distributed components that have to interact among

each other and have to react based on events that are initiated in their environment. Such applications

cannot be easily and effectively developed based on sequential programming paradigms, since the

execution flow of the components, as well as the dynamicity in their instantiation and operation,

cannot be predicted or represented on a sequential flow. Furthermore, it is really hard to support

stateful mechanisms in such cases, since in case of a state change all the associated components have

to be informed at real time, without negative impact in the overall application performance [94].

In case of using traditional programming solutions (such as design patterns and event-driven

programming), interactive applications are typically constructed around the notion of asynchronous

callbacks (event handlers) [93]. However, in this case, a set of problems may arise. For instance,

numerous isolated code fragments can be manipulating the same data and their order of execution is

unpredictable, thus causing non-desirable effects at execution time. Furthermore, since callbacks

usually do not have a return value, they must perform side effects in order to affect the application

state [95][96].

In order to be able to develop efficient distributed applications with high notion of reactiveness, the

reactive programming paradigm has been recently proposed as a solution that is well-suited for

developing event-driven applications. Reactive programming tackles issues posed by event-driven

applications by providing abstractions to express programs as reactions to external events and having

the language automatically manage the flow of time (by conceptually supporting simultaneity), and

data and computation dependencies. Thus, programmers do not need to worry about the order of

events and computation dependencies.

Reactive programming supports the development of reactive applications through dedicated language

abstractions. It is based on concepts like time-varying values (a.k.a. signals or behaviors), events

streams to model discrete updates, automatic tracking of dependencies, and automated propagation of

change [90][93]. Reactive programming means changes can be made without worrying about logic

ordering. When implemented correctly, reactive programming lets software components take care of

dependency management rather than leaving that work to the programmers.

As already stated, the momentum for the adoption of reactive programming approaches has also been

fortified by the need to transit from stateful to stateless approaches in order to increase the

scalability of the provided services and applications. Nodes have to be able to be added or removed

during runtime, independently if they are related with the same process or not, the same physical

machine or not, or even if they are in a completely different point of presence (e.g. data center).

Failures are also handled in an automated way, since they can be encapsulated as messages and sent

off to another part of the system that has the ability to deal with it properly.

Regarding the evolvement of reactive programming approaches, it should be noted that functional

reactive programming was firstly introduced in Haskell to support interactive animations, while its

popularity has been increased through its adoption in Scheme, Javascript and Scala. Concepts inspired

by reactive programming have been also applied to Microsoft Reactive Extensions and stimulated a

significant number of novel popular front-end libraries (e.g. React.js,) [87-92].

Given the transition to reactive programming approaches and the development of highly reactive

distributed applications, it should be noted that -in addition to the development of novel applications

decomposed in a set of microservices- a set of DevOps operations have to be also planned for

supporting the real-time monitoring and management of such microservices. In ARCADIA, such

operations are going to be supported in an autonomic or semi-autonomic way depending on the type

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

20 / 83

of the considered application (e.g. autonomic preparation of deployment script in case of adoption of

the ARCADIA software development paradigm for a new application).

In the following, two representative reactive programming toolkits and libraries; akka and quasar, are

presented in brief.

3.1.1 akka

akka [97] is a toolkit and runtime for building highly concurrent, distributed, resilient, message-

driven applications on the Java Virtual Machine (JVM) [98]. The core characteristics supported are:

 Simple Concurrency & Distribution

o Asynchronous and Distributed by Design

o High-level abstractions like Actors2, Streams and Futures

 Resilient by Design

o Write systems that self-heal

o Remote and local supervisor hierarchies

 High Performance

o 50 million msg/sec on a single machine

o Small memory footprint; ~2.5 million actors per GB of heap

 Elastic & Decentralized

o Adaptive cluster management

o load balancing

o routing

o partitioning and sharding

 Extensible

o Support of Akka Extensions to adapt Akka to fit any needs

Akka decouples business logic from low-level mechanisms such as threads, locks and non-blocking

I/O, and liberates developers from the hardiest challenges of managing the state and location of

services. It is an Actor-based runtime for managing concurrency, elasticity and resilience on the JVM

with support for both Java and Scala.

Akka can be used in two different ways; as a library: used by a web app and as a microkernel: stand-

alone kernel to drop your application into.

2 “Actors are objects which encapsulate state and behavior, they communicate exclusively by

exchanging messages which are placed into the recipient’s mailbox. In a sense, actors are the most

stringent form of object-oriented programming, but it serves better to view them as persons: while

modeling a solution with actors, envision a group of people and assign sub-tasks to them, arrange their

functions into an organizational structure and think about how to escalate failure (all with the benefit

of not actually dealing with people, which means that we need not concern ourselves with their

emotional state or moral issues). The result can then serve as mental scaffolding for building the

software implementation” [97].

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

21 / 83

3.1.2 Quasar

Quasar [99] is an open source JVM library that simplifies the creation of highly concurrent software

that is easy to write and reason about, performant, and fault tolerant.

Quasar’s core implements true lightweight threads on the JVM called fibers [100]. Fibers can be

instantiated and run just like regular threads, but rather than a few thousand of threads, a single JVM

can easily run hundreds of thousands or even millions of fibers. Fibers enjoy the scalability and

performance benefits of asynchronous (callback-based) programming while still maintaining the

simplicity, intuitiveness and familiarity of threaded code. Fibers use channels (CSP), data-flow

variables, or other forms of coordination, to communicate with one another efficiently. On top of

fibers, Quasar provides an actor framework that strongly resembles Erlang’s. Actors are a simple and

natural way to implement scalable and fault-tolerant business logic. Quasar’s main features supported

are:

 True, preemptively scheduled, lightweight threads (fibers)

 Scalability and performance without complex, hard-to-maintain code

 Non-obtrusive integration – use just what you need

 High-performance channels for a CSP (Communicating Sequential Processes) model

 An Erlang-like actor framework

 Selective receive in actors

 Actor supervisors

 Hot code swapping

 Runtime monitoring: exposes metrics about fiber and actor performance and health

Quasar library provides high-performance lightweight threads, Go-like channels, Erlang-like actors,

and other asynchronous programming tools for Java and Kotlin.

3.2 Programmable Infrastructure

There are two complementary aspects that we must consider, stemming from different perspectives,

needs and roles of the relevant actors. On the one hand, for developers programmability is the mean to

create the proper execution environment independently of the underlying physical resources. They

need both overarching resource abstractions at the design/development stage and convenient APIs at

run-time, in order to implement their application in an environment-agnostic way and to dynamically

tailor them to the actual (and usually changing) context. To this aim, the Programmable

Infrastructure provides developers with a common and single point of access to all resources, hiding

physical issues like resource nature, faults, maintenance operations, and so on. On the other hand,

resource owners are mostly concerned with operation and maintenance of (usually) large pools of

resources. They need handy tools to deal with typical management tasks like insertion, replacement,

removal, upgrade, restoration and configuration with minimal service disruption and downtimes. To

this aim, a high degree of automation is desirable, through programmatic recourse to self-* capabilities

(self-tuning, self-configuration, self-diagnosis, self-healing).

Cloud computing implements a Programmable Infrastructure by providing users with (virtual)

resources on demand, according to their need, and by metaphorically blurring the real physical

infrastructure inside an opaque “cloud”. The kind of resources exposed by clouds depends upon the

specific service model; they are infrastructural elements like (virtual) hosts, storage space, network

devices (Infrastructure-as-a-Service model, IaaS), computing platforms including the Operating

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

22 / 83

System and a running environment (Platform-as-a-Service model, PaaS), or application software like

databases, web servers, mail servers (Software-as-a-Service model). In ARCADIA, we will mainly target

the IaaS model, since it gives developers the broadest control on the execution environment for their

applications.

Software Defined Networking (SDN) is a new paradigm based on network programmability that

has been proposed to overcome the many limitations and shortcomings of the legacy model based on

configuration of network devices: reduced set of instructions, difficulty in adapting to varying

conditions and in responding to a wide range of network events and applications, vertically-integrated

network solutions, scarce interoperability and homogeneity among configuration interfaces,

uncertainly results due to errors or different human skills.

Network function virtualization (NFV) is about all those network services that have been delivered

till now as hardware appliances (firewalls, load-balancers, application delivery controllers, etc.) to

become virtualized and run on standard hardware. Virtualizing network functions offers flexibility and

several benefits similar to those of platform virtualization while all these virtualized network

functions (VNF) will take advantage of programmability features to enable service-chain automation.

Though the aforementioned are different architectures, frameworks and implementations, these

approaches are interrelated and their synergy towards a fully programmable infrastructure is more

and more evident in today’s platforms.

In the following, the building blocks of a programmable infrastructure are described and categorised

while representative existing solutions are presented. Then, representative platforms are presented

which gather most of the attention, efforts and large scale deployments along with some newest

platforms expected to gain significant attention.

3.2.1 Programmable Infrastructure Building Blocks

In the following, the various alternative execution environments for an HDA are analyzed and

compared along with technologies facilitating illustration of its network environment. These

technologies are the candidate building blocks of a programmable infrastructure platform capable of

supporting the execution of an HDA as a service chain while meeting desired objectives.

3.2.1.1 Application Execution Environment

An application may run natively on an Operation System (OS) of a physical machine (PM), or on a

hosted Container in an OS of a PM (Container virtualization) or on an OS or a hosted container in

an OS of a virtual machine (VM) hosted by a hypervisor of a PM (bare metal virtualization) or of an

OS of a PM (hosted virtualization). Application running in further nested running environments is

also possible, although considered mostly valid only for testing purposes e.g. running in a Container in

an OS of a VM hosted by a hypervisor of a VM hosted by a hypervisor of a PM.

We will refer as running on Native OS the case of running on an OS of a PM, as running on a

Container the case of running on a hosted Container in an OS of a PM and as running on a Virtual

Machine the case of running on a VM hosted by a hypervisor. All other valid cases meaningful (like

running on a container in a VM) or less meaningful are considered as nested cases.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

23 / 83

Figure 3-2: Characteristics according the application running environment

Roughly, bare metal or hosted virtualization are based on the hardware level virtualizing hardware

resources while container virtualization is done at the operating system level rather at the hardware

level. Both hypervisors and containers offer an isolated environment for application running in

terms of a virtual machine or a container respectively. This is not the case when applications run in the

same Native OS (Figure 3-2). Sandboxing was developed as a technique to isolate for security purposes

an application environment in Native OS, but more or less it falls in the category of containerization. In

Container virtualization each container shares the same kernel of the base native OS, thus hosting a

different OS in a container which will be the running environment of applications is not possible as it

is in the hypervisor case. However, container virtualization is considered “light” since unlike in

hypervisors, which access physical resources through a virtualization layer, it induces less overhead

when resources are accessed. It can be claimed that the most efficient use of physical resources is

accomplished when an application is running at the Native OS, following when it runs in a Container

and lastly when it runs in a Virtual machine. This fact indicates that the capacity of a physical

machine in terms of accommodating resource hungry applications is higher when these run in

native OS than when these run in containers which in turn is higher when these run in virtual

machines [1]. Regarding storage, hypervisors consume storage space for each virtual machine while

containers use a single storage space plus smaller deltas for each layer and thus are much more

efficient. Furthermore, considering instantiating the running environment for a new application,

there is zero latency when native OS is considered, given that it is already up and running, while there

is latency for a container or a VM to boot and be application-ready. However, latency is considerably

less in container virtualization since containers typically can boot in less than 500ms while a VM in

a hypervisor boots according to the OS typically in about 20 seconds, depending on storage speed [2]

[1]. When horizontal scaling of an application is considered it seems that containers offer more

opportunities for rapid scaling. In the case of Native OS horizontal scaling the application will require

booting up a new available physical machine like in Metal as a Service (MaaS) setups is done, thus this

will require a noticeable latency typically higher than bringing up a VM. Both containers and virtual

machines are portable, thus running instances may migrate to a different host; for example when

vertical scaling is required that it is not possible on the originating host or consolidation policies

impose it in order to operate minimum physical machines in an infrastructure.

The most common required characteristics regarding an application’s running environment which

partially led development in the virtualization area are: isolation of the application environment,

resource isolation, low to zero performance loss compared to native OS environment, easy

sharing between virtualized hosts, easy management of application running environments,

portability.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

24 / 83

Furthermore, resources management is considered quite crucial in order to efficiently handle

capacity and meet applications requirements. Tools to control resources are available in all types of

running environments (Native OS, Containers, Virtual machines). In example, Cgroups in Linux Kernel

which was originated from Google Engineers who had to limit resource utilization (CPU, memory etc.)

for different process groups, serves as a valuable tool in resources management [3] [4]. However, a

still not resolved aspect of container resource management is the fact that processes running inside a

container are not aware of their resource limits [1].

Container virtualization although has not reached yet the maturity of hypervisors most probably will

be the future trend regarding application running environments. A late differentiation is between OS

containers and Application containers [5]. The idea behind application containers is that you create

different containers for each of the components in your application which is ideal to deploy a

distributed, multi-component system using the microservices architecture, able to scale both

horizontally and vertically the different applications.

In the following, representative illustrations of each alternative execution environment are presented

and compared.

3.2.1.1.1 Hypervisors

Main representatives of the open source hypervisors are KVM [6] and XEN [7] while from the

proprietary/commercial ones are VMware Vsphere [8] and Microsoft Hyper-V [9]. The critical mass of

cloud solutions for data centers tend to be built around KVM which is a linux hosted virtualization

hypervisor and Vsphere which is a bare metal hypervisor. In the following (Table 3-1) a brief side by

side comparison on selected characteristics between the aforementioned hypervisors is presented.

The open source KVM is compared in its commercial bundling from Redhat and Xen in its commercial

bundling from Citrix. For a thorough comparison of these products the reader may refer to [10]. The

selected core characteristics presented in this comparison, roughly, refer to the host configuration and

capabilities, to the VM configuration, interoperability and to supported functions regarding resources

management, security and VM mobility.

Table 3-1: Source [10] Comparison of popular Hypervisors

Hypervisor VMware

vSphere 5.5

Redhat

RHEV 3.5

Microsoft

HyperV 2012R2

Citrix

XenServer 6.5

General Hypervisor

Details/Size

Virtual Hardware

'version 10',

VMware ESXi 5.5:

Build 1331820,

vCenter Server 5.5:

Build 1312298,

vCenter Server

Appliance 5.5

KVM with RHEV-H

or RHEL

Hyper-V '3' XenServer 6.5: Xen

4.4 -based

Host Config Max Consolidation

Ratio

512vm, 4096 vCPU ,

max 32 vCPU / core

No limit stated 1024 vims/host,

2048 vCPUs/host

500 vm (Win) or

650 (Linux) per

host

 Max CPU – Host 320 (Logical) 160 (logical) 320 Logical CPUs 160 (logical)

 Max Cores per CPU unlimited unlimited unlimited unlimited

 Max Memory – Host 6 TB (New with

Update 2)

4TB 4TB 1TB

VM Config Max vCPU per VM 64 160 vCPU per VM up to 64 vCPU (Win)

/ 64 vCPU (Linux)

16 (Win) /

32(Linux)

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

25 / 83

 Max RAM per VM 1TB 4TB 1TB 192GB

 Serial Ports Yes max 4 (incl.

vSPC)

No (serial console

via hooks possible)

yes (named pipe) No

 Hot Add/Plug Yes (CPU, Mem,

Disk, NIC), PCIe SSD

Yes (disk, NIC, CPU) disks and memory

(dynamic) only

Yes (disk, NIC)

Memory Dynamic / Over-

Commit

Yes (Memory

Ballooning)

Yes (virtio), Mem

Balloon

optimization and

error messages

Yes - Dynamic

Memory (Linux

guest support)

Yes (DMC)

 Memory Page Sharing Yes (Transparent

Page Sharing)

Yes (KSM) No No

 HW Memory

Translation

Yes Yes Yes (SLAT) Yes

Interoperability OVF Support Yes Yes Yes (OVF

Import/Export)

Yes, incl. vApp

 HW Compatibility Very

Comprehensive (see

link)

Comprehensive Strong Windows

Ecosystem

Improving

 Guest OS Support Very

Comprehensive (see

link)

Limited Closing the gap Good

 Scripting / APIs Web Services

API/SDK, CIM, Perl,

.NET, Java SDKs,

Client Plug-In API,

vSphere Clip, vMA

REST API, Python

CLI, Hooks, SDK

Yes (WMI API,

PowerShell 4 -

NEW)

Yes (SDK, API,

PowerShell)

 Cloud API vCloud API REST API Service Provider

Foundation API,

Azure Service

Management API

CloudStack APIs,

support for AWS

API

Other Resource Pools Yes Yes (Quota, Devices

SLA, CPU Shares)

Yes (Host Groups) No

 Security Free: ESXi Firewall,

vShield Endpoint;

Advanced (with

Vendor Add-On:

NSX / vCloud

Networking and

Security)

SELinux, iptables,

VLANs, Port

Mirroring

Windows Security,

Hyper-V Extensible

Switch (DNSSEC,

PVLANs, port ACLs,

BitLocker etc.)

Basic (NetScaler -

Fee-Based Add-On)

VM Mobility Live Migration of VMs Yes vMotion, Metro

vMotion and 'shared

nothing' vMotion

(4-8 concurrent)

Yes (Live Migration

- unlimited

concurrent

migrations, 3 by

default)

Yes ('Unlimited'

Concurrent, 'Shared

Nothing'; new

compression &

SMB3 options)

Yes XenMotion

 Migration

Compatibility

Yes (EVC) Yes (except with

CPU pass-through)

Yes (Processor

Compatibility)

Yes (Heterogeneous

Pools)

 Maintenance Mode Yes Yes Yes Yes

 Automated Live

Migration

Yes (DRS) - CPU,

Mem, Storage (new

Yes (LB) - Built-in

(CPU) and

Yes - Dynamic

Optimization (CPU,

Yes Workload

Balancing

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

26 / 83

affinity rules,

migrate replicated

vm)

Scheduler for

'custom'

mem, disk I/O, Net

I/O)

 Power Management Yes (DPM),

Enhanced Host

Power Management

(C-States)

Yes (Power Saving) Yes - Power

Optimization

Yes Workload

Balancing

 Storage Migration Yes (Live Storage

vMotion); including

replicated vm

Yes

Yes (Live and

'Shared Nothing')

Yes (Storage

XenMotion)

3.2.1.1.2 Containers

Lightweight process virtualization is not new; it is met in the past in Solaris Zones, BSD jails, AIX

WPARs (Workload Partitions) and Linux-based containers projects [11].

Most focus now is on Linux Containers (LXC) [12] and other solutions which are based or at least

initially were based on them, like Docker [13]. The building blocks of LXC are namespaces and cgroups

supported at the kernel level [11]. According to the namespaces man page [14]: “A namespace wraps a

global system resource in an abstraction that makes it appear to the processes within the namespace

that they have their own isolated instance of the global resource” while cgroups (control groups) is a

linux kernel feature that limits, accounts for and isolates the resource usage (CPU, memory, disk I/O,

network, etc.) of a collection of processes [15].

Containers aim to offer an environment close to the one of a VM but without the overhead that comes

from running a separate kernel and simulating all the hardware. LXD [12] is “hypervisor” for

containers aiming to combine the speed and density of containers with the security of traditional

virtual machines. It is made of three components: A system-wide daemon (lxd), a command line client

(lxc) and an OpenStack Nova plugin (nova-compute-lxd) while the daemon exports a REST API.

Docker is in fact an orchestration solution built on top of the linux kernel. Docker originally used LXC

as the “engine” but recently developed their solution called “libcontainer”. Docker containers focus to a

single application by design, a container that can only run a single app. Furthermore, layered

containers are supported. Thus, it has a different design approach from lxc, it is application oriented

while lxc is more like a VM. In Figure 3-3 the key differences between LXC and Docker are shown.

Regarding the Docker’s architecture, a set of Docker platform services orchestrate HDAs operating

exclusively on Docker containers. These three services, Docker Compose, Docker Swarm, and Docker

Machine, cover both deployment and post-deployment functionalities. The deployment of the multi-

container distributed applications can be done with Docker Compose and is based on YAML. Failover

and resource scaling management is offered through Docker Swarm which creates and manages a

cluster of Docker containers. Finally, Docker Machine allows simple, CLI-based provisioning of Docker

containers in variety of infrastructures such as laptops, datacenter VMs, and cloud nodes. This can

greatly simplify the up-scaling of Docker container clusters that Docker Swarm makes possible.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

27 / 83

Figure 3-3: Source [16] LXC versus Docker

Microsoft as well is about to present its own solution to support Windows OS containers; Hyper-V

Containers, a new container deployment option with enhanced isolation powered by Hyper-V

virtualization and Nano Server, a minimal footprint installation of Windows Server that is highly

optimized for the cloud, and ideal for containers [17].

3.2.1.1.3 Native OS

In a cloud environment, a new type of service attempts to handle a physical machine as easy as a

virtual instance. Metal As A Service (MAAS) [18] provides a toolset to power on/off a physical server

or more (in case of a cluster) utilizing one out of several remote management technologies (e.g. Wake

up on Lan, IPMI, AMT), commission with an OS through PXE boot and assign applications and

workloads for execution in Native OS or even containers or virtual machines. Roughly, in a similar

philosophy is the Ironic service [19] as part of the Openstack cloud software.

3.2.1.2 Application Networking Environment

Illustration of a virtual network among executing environments and middleboxes as required by an

HDA, is facilitated by technologies developed in the highly convoluted areas [20] of Network

Virtualization (NV), Software Defined Networking (SDN) and Network Functions Virtualization

(NFV).

Network virtualization is defined as the abstraction of a network that is decoupled from the

underlying physical equipment. Any technology that facilitates hosting a virtual network on an

underlying physical network infrastructure may be considered to fall within the scope of network

virtualization [20]. Multiple isolated virtual networks are allowed to run over a shared infrastructure.

Historically, network equipment has supported for many years the creation of virtual networks, in the

form of Virtual Local Area Networks (VLANs) and Virtual Private Networks (VPNs). A Virtual Local

Area Network (VLAN) provides the illusion of a single LAN although it may span over multiple

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

28 / 83

physical subnets while multiple VLANs may be illustrated over the same collection of switches and

routers. A virtual private network (VPN) extends a private network across a public network,

enabling a network device to send and receive data across shared or public networks as if it were

directly connected to the private network by establishing a virtual point-to-point connection through

the use of dedicated connections, virtual tunneling protocols, or traffic encryption. The idea of an

overlay network is met in its expanded version in Peer to Peer (P2P) networking where end-hosts

who run a special P2P application form the overlay network by being its nodes, without any kind of

demand from the networking equipment.

Networking equipment virtualization support; routers and switches able to provide isolated virtual

instances of their resources (partition one physical device and make it appear as multiple or make

multiple physical devices appear as one), further provided the ability of building virtual infrastructures

over physical ones and segmenting the physical network into many logical ones (slices) [21] [22].

Providing several virtual instances of a networking device requires the separation of the control plane

and the forwarding plane (management and packet transmission) within the device. Towards this

direction Software Defined Networking (SDN) became an enabling technology for network

virtualization.

Software Defined Networking (SDN) provides a different perspective in designing and managing

networks. SDN has two defining characteristics. First, an SDN decouples/separates the system that

decides how to handle the traffic (Control Plane) from the underlying systems that forward the

traffic to destinations (Data Plane) according to decisions that the control plane makes. Second, an

SDN consolidates the control plane, so that a single software control program controls multiple

data-plane elements (Figure 3-4). The SDN control plane directly controls the state in the

network’s data-plane elements (i.e., routers, switches, middleboxes) via an Application

Programming Interface (API). OpenFlow is an example of such an API.

Figure 3-4: SDN architecture

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

29 / 83

Network virtualization and SDN does not require or imply one another, however there is a twofold

enabling synergy.

The OpenFlow protocol [23] standardized a data-plane model and a control-plane API by building on

technology that switches already supported. OpenFlow enabled more functions than earlier route

controllers while building on existing switch hardware. Vendors did not have to upgrade the hardware

in order to make their switches OpenFlow-capable but only upgrade their firmware. Relying on

existing switch hardware may be considered that limits flexibility, however facilitated OpenFlow to be

almost immediately deployable.

An SDN Controller in SDN is the core of an SDN network, relaying information to switches/routers via

southbound APIs and the applications via northbound APIs. In an OpenFlow environment, any device

that communicates to an SDN/OpenFlow Controller supports the standard OpenFlow protocol. The

SDN Controller pushes down changes to the switch/router flow-table allowing network

administrators to partition traffic, control flows for optimal performance, and perform testing of new

configurations and applications.

Furthermore, SDN’s separation between the controller and the data-plane state has facilitated the live

migration of a complete network as an ensemble—the VMs, the network, and the management

system—to a different set of physical resources [24, 25]. In [24, 25] the authors introduce a method

for migrating a network, that transparently to the application running on the controller clones the

data-plane state to a new set of switches, and then incrementally migrates the traffic sources (e.g., the

VMs). During this transition, both networks deliver traffic and a synchronized state is maintained.

Network Functions Virtualization (NFV) [26] suggests that any service to be delivered on

proprietary, application specific hardware should be able to be delivered on virtual machines. Thus,

routers, firewalls, load balancers and other network devices should be able to be illustrated on virtual

machines hosted on commodity hardware [27]. Such an approach has been facilitated by network

focused advancements in PC hardware. The fact that required packet processing at a network

device requires proprietary hardware when other than small scale deployments are considered, tends

to not hold any more due to moved focus and several advancements such as in packet handling within

Intel's processors [28] [29], allowing processor cores to be re-programmed into network processors

and PC-based network devices to be able to push 10's or even 100's of Gbp/s.

The NFV framework (Figure 3-5, Figure 3-6) consists of three main components:

1. Virtualized network functions (VNF) are software implementations of network functions that
can be deployed on a Network Function Virtualization Infrastructure (NFVI).

2. Network function virtualization infrastructure (NFVI) is the totality of all hardware and
software components which build up the environment in which VNFs are deployed. The NFV-
Infrastructure can span across several locations. The network providing connectivity between
these locations is regarded to be part of the NFV-Infrastructure.

3. Network functions virtualization management and orchestration architectural framework
(NFV-MANO Architectural Framework) is the collection of all functional blocks, data
repositories used by these functional blocks, and reference points and interfaces through
which these functional blocks exchange information for the purpose of managing and
orchestrating NFVI and VNFs.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

30 / 83

The building block for both the NFVI and the NFV-MANO is the NFV platform. In the NFVI role, it

consists of both virtual and physical processing and storage resources, and virtualization software. In

its NFV-MANO role it consists of VNF and NFVI managers and virtualization software operating on a

hardware controller. The NFV platform implements carrier-grade features used to manage and

monitor the platform components, recover from failures and provide effective security - all required

for the public carrier network.

Figure 3-5: NFF framework architecture

Figure 3-6: NFV framework break down

The benefits of the NFV approach follow the benefits of platform virtualization such as reduced CAPEX

and OPEX, reduces complexity, flexibility, easier management, remote instantiation, resources’ use

efficiency.

Network Functions Virtualization can be implemented without requiring SDN, however both concepts

and solutions can be complementary producing higher value.

Although the idea of moving every network function as a virtual machine to a central hypervisor is

very attractive, however we have to consider that some network functions are tied to a physical

location e.g. a firewall is required at the connection point of an internal network. SDN and NVF along

may provide effective solutions in such cases because a virtualized network is far less restricted by

location e.g. in the firewall example once the firewall function has been allocated to a specific virtual

machine, then a software defined network could place it at the network edge regardless of its actual

physical location by providing a direct, quarantined link from the Internet to the virtual firewall before

traffic entered the internal network. [29]. Admittedly, such a routing to the Virtual Network Function

(VNF) the firewall in this example could be manually configured without the need of SDN, however

SDN offers a great potential of reforming the network e.g. in the case of network problems

reconfiguring immediately the network and redirecting traffic to a different VNF.

A combination of SDN and NFV seems ideal as it ensures not only initial deployment but also required

flexibility in terms of reconfigurations during its run time, triggered by scaling requirements,

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

31 / 83

requirements related to achieving optimization objectives and sustaining continuity of operation

under system’s dynamics.

In the following, various illustrations of SDN components are presented. Since the focus is on software

components illustrating network functionality which may execute in a virtualized execution

environment, such components maybe considered as NFV components as well.

3.2.1.2.1 SDN/NFV components

A popular open source implementation of a multilayer virtual switch supporting Openflow is Open

vSwitch [31]. Open vSwitch is able to operate either as a soft switch running within the hypervisor or

as the control stack for switching silicon. It has been ported to multiple virtualization platforms and

switching chipsets. It is the default switch in XenServer 6.0, the Xen Cloud Platform and also supports

Xen, KVM, Proxmox VE and VirtualBox. It has also been integrated into many virtual management

systems including OpenStack, openQRM, OpenNebula and oVirt. Open vSwitch project also includes a

trivial Openflow reference controller, OVS.

There are several opensource Openflow controllers like POX [32]; which has a high-level SDN API

including a queriable topology graph and support for virtualization, IRIS [33]; which is a Resursive

SDN Openflow Controller with the following features : (a) Horizontal Scalability for carrier-grade

network (b) High Availability with transparent failover from failure (c) Multi-domain support with

recursive network abstraction based on Openflow, and Floodlight [34]; which is a java-based

Openflow controller designed to work with the growing number of switches, routers, virtual switches,

and access points that support the OpenFlow standard (Figure 3-7).

Figure 3-7: Source [34] Floodlight Openflow controller

In the following, Table 3-2 presents a list of current software switch implementations with a brief

description including implementation language and the OpenFlow standard version that the current

implementation supports.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

32 / 83

Table 3-2: List of available SDN software switches.

Name Implementation Overview Version

Open vSwitch
[31]

C/Python Open source software switch that aims to implement a switch platform
in virtualized server environments. Supports standard management
interfaces and enables programmatic extension and control of the
forwarding functions. Can be ported into ASIC switches.

v1.0

Pantou/
OpenWRT [44]

C Turns a commercial wireless router or Access Point into an OpenFlow-
enabled switch.

v1.0

ofsoftswitch13
[45]

C/C++ OpenFlow 1.3 compatible user-space software switch implementation. v1.3

Indigo [46] C Open source OpenFlow implementation that runs on physical switches
and uses the hardware features of Ethernet switch ASICs to run
OpenFlow.

v1.0

OpenFaucet
[47]

Python As a pure Python implementation of OpenFlow protocol, OpenFaucet can
implement both switches and controllers.

v1.0

Table 3-3 provides a list of native SDN switches currently available in the market, with indication of

the OpenFlow version they implement.

Table 3-3: List of commercial switches compliant with the OpenFlow protocol

Vendor Model Version

Arista 7050 series v1.0

Hewlett-Packard 8200zl, 6600, 6200zl, 5400zl, 3500/3500yl, 3800 v1.0

Brocade MLX Series, NetIron CES 2000 Series, NetIron XMR series, ICX 7750 switch v1.0

Dell Force10 Z9000, S-Series S4810 v1.0

Extreme networks Summit X440, X460, X480, and X670 v1.0

IBM RackSwitch G8264 v1.0

Larch networks Linux-based OpenFlow switch v1.0

NEC PF5240, PF5248, PF5820, and PF1000 virtual switch v1.0

NoviFlow NoviSwitch 1248 and NoviSwitch 1132 v1.3

Pronto 3290 and 3780 v1.0

Juniper Junos MX-Series v1.0

Pica8 P-3290, P-3295, P-3780 and P-3920 v1.3

Table 3-4 shows a snapshot of current controller implementations; all the controllers support the

OpenFlow protocol version 1.0, unless stated otherwise.

Table 3-4: List of controllers compliant with the OpenFlow standard.

Controller Implementation
Open
Source Developer Overview

POX [32] Python Yes Nicira General, open-source SDN controller written in Python

NOX [48] Python/C++ Yes Nicira The first OpenFlow controller written in Python and
C++.

MUL [49] C Yes Kulcloud OpenFlow controller that has a C-based multi-threaded
infrastructure at its core. It supports a multi-level
north-bound interface for application development.

Maestro [50] Java Yes Rice University A network operating system based on Java; it provides
interfaces for implementing modular network control
applications and for them to access and modify network
state

Trema [51] Ruby/C Yes NEC A framework for developing OpenFlow controllers
written in Ruby and C.

Beacon [52] Java Yes Stanford A cross-platform, modular, Java-based OpenFlow
controller that supports event-based and threaded

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

33 / 83

operations.

Helios [54] C No NEC An extensible C-based OpenFlow controller that
provides a programmatic shell for performing
integrated experiments.

Floodlight
[34]

Java Yes BigSwitch A Java-based OpenFlow controller (supports v1.3),
based on the Beacon implementation, that works with
physical- and virtual- OpenFlow switches.

SNAC [55] C++ No Nicira An OpenFlow controller based on NOX-0.4, which uses a
web-based, user-friendly policy manager to manage the
network, configure devices, and monitor events.

Ryu [56] Python Yes NTT,
OSRG group

An SDN operating system that aims to provide logically
centralized control and APIs to create new network
management and control applications. Ryu fully
supports OpenFlow v1.0, v1.2, v1.3, and the Nicira
Extensions.

IRIS [33] Java Yes ETRI IRIS is a recursive OpenFlow controller that aims to
support scalability, high availability, and multi-domain
support.

OESS [57] Perl Yes NDDI OESS is a set of softwares to configure and control
dynamic VLAN networks using OpenFlow-enabled
switches.

Jaxon [53] Java Yes Independent
Developer

Jaxon is a NOX-dependent OpenFlow controller; it’s
primarily intended to be used as part of a bigger project,
which is working towards using Scala to manage
datacenters by representing datacenter entities (like
virtual machines) as normal Scala objects.

NodeFlow
[58]

JavaScript Yes Independent
Developers

An OpenFlow controller written in JavaScript for
Node.JS.

ovs-
controller
[31]

C Yes Independent
Developers

A simple OpenFlow controller reference
implementation with Open vSwitch for managing any
number of remote switches through the OpenFlow
protocol; as a result the switches function as L2 MAC-
learning switches or hubs.

OpenDayLig
ht [38]

Java Yes OpenDayLight
community

OpenDaylight is an open platform for network
programmability to enable SDN and NFV for networks
at any size and scale. It also features a deeper
integration with OpenStack,

Flowvisor
[59]

C Yes Stanford/Nicira Special purpose controller implementation. Flowvisor
acts as a transparent proxy between OpenFlow switches
and multiple OpenFlow controllers, to create network
slices and to delegate control of each slice to a different
controller.

RouteFlow
[60]

C++ Yes CPqD Special purpose controller implementation. RouteFlow
provides virtualized IP routing over OpenFlow capable
hardware.

3.2.2 Cloud Infrastructure Platforms and Orchestration Frameworks

In the following Cloud Infrastructure Platforms and Orchestration Frameworks are presented which

bring together several of the previously presented building blocks to provide a complete solution of a

programmable infrastructure. Although highly interrelated and synergetic, platforms are presented

within a rough categorization in Cloud Computing Platforms, SDN/NFV Platforms and Other

Orchestration Frameworks. The latter are mostly focused to provide application oriented solution by

providing the orchestration means.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

34 / 83

3.2.2.1 Cloud Computing Platforms

Openstack, Cloudstack and OpenNebula are presented as the most representative cloud platforms

while then compared with each other and other private and public cloud computing infrastructure

platforms.

3.2.2.1.1 Openstack

OpenStack software [35] controls large pools of compute, storage, and networking resources

throughout a datacenter, managed through a dashboard or via the OpenStack API (Figure 3-8). Users

primarily deploy it as an infrastructure as a service (IaaS) solution.

Figure 3-8: Source [5] Openstack

OpenStack’s architecture is modular. The components of the latest Openstack Kilo version are [36]:

(1) Compute (Nova); a cloud computing fabric controller designed to manage and automate pools of

computer resources which can work with widely available virtualization technologies (such as KVM,

XEN, VMWARE, Hyper-V, Linux Containers), as well as bare metal and high-performance computing

(HPC) configurations. Compute's architecture is designed to scale horizontally on standard hardware.

(2) Image Service (Glance); provides discovery, registration, and delivery services for disk and server

images.

(3) Object Storage (Swift); it is a scalable redundant storage system.

(4) Dashboard (Horizon); provides administrators and users a graphical interface to access, provision,

and automate cloud-based resources.

(5) Identity Service (Keystone); provides a central directory of users mapped to the OpenStack

services they can access. It acts as a common authentication system across the cloud operating system

and can integrate with existing backend directory services like LDAP.

(6) Networking (Neutron); it is a system for managing networks and IP addresses. OpenStack

Networking provides networking models for different applications or user groups.

(7) Block Storage (Cinder); provides persistent block-level storage devices for use with OpenStack

compute instances.

(8) Orchestration (Heat); it is a service to orchestrate multiple composite cloud applications using

templates, through both an OpenStack-native REST API and a CloudFormation-compatible Query API.

(9) Telemetry (Ceilometer); provides a Single Point Of Contact for billing systems, providing all the

counters they need to establish customer billing, across all current and future OpenStack components.

(10) Database (Trove); it is a database-as-a-service provisioning relational and non-relational

database engines.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

35 / 83

(11) Elastic Map Reduce (Sahara); provides users with simple means to provision Hadoop clusters by

specifying several parameters like Hadoop version, cluster topology, nodes hardware details and a few

more.

(12) Bare Metal Provisioning (Ironic); it is an incubated OpenStack project that aims to provision bare

metal machines instead of virtual machines.

(13) Multiple Tenant Cloud Messaging (Zaqar); it is a multi-tenant cloud messaging service for Web

developers

(14) Shared File System Service (Manila); provides an open API to manage shares in a vendor agnostic

framework.

(15) DNSaaS (Designate); DNS as a Service

(16) Security API (Barbican); it is a REST API designed for the secure storage, provisioning and

management of secrets.

3.2.2.1.2 Cloudstack

Apache CloudStack provides an open and flexible cloud orchestration platform to deliver reliable and

scalable private and public clouds [37]. It provides a management server and agents for hypervisor

hosts so that illustrating an IaaS cloud is possible. Indicatively, it works with hosts running

XenServer/XCP, KVM, Hyper-V, and/or VMware ESXi with vSphere, manages storage for instances and

orchestrates network services from the data link layer (L2) to some application layer (L7) services,

such as DHCP, NAT, firewall, VPN, and so on.

3.2.2.1.3 OpenNebula

OpenNebula [61] is an open-source cloud computing platform for managing heterogeneous

distributed data center infrastructures. It manages a data center's virtual infrastructure to build

private, public and hybrid implementations of IaaS. OpenNebula orchestrates storage, network,

virtualization, monitoring, and security technologies to deploy multi-tier services as virtual machines

on distributed infrastructures, combining both data center resources and remote cloud resources,

according to allocation policies. It provides support for several cloud interfaces such as Amazon EC2

Query, OGF Open Cloud Computing Interface and vCloud. It works with several hypervisors such as

Xen, KVM and VMware while it can accommodate multiple hardware and software combinations in a

data center.

3.2.2.1.4 Comparison

There are several software solutions available for cloud computing, both commercial and open-source.

We provide a very quick and concise review of the most popular ones, some of them presented before,

by comparing the following elements:

 Resources: the main virtual resources exposed to users (e.g., computing, networking, storage);

 Monitoring: what kinds of statistics can be collected by users;

 User interfaces (UI): what kinds of interfaces are available to users (Web GUI, Command Line

Interface, Application Programming Interface);

 Management interfaces (MI): what kind of management interfaces are available for
management purposes;

 Relevant features: some features that are relevant for ARCADIA, like live migration, scheduling,

power management, horizontal and vertical scalability.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

36 / 83

Our analysis does not include all software solutions available to build clouds; we only take into

account most used commercial services for public clouds and software for building private clouds

(Table 3-5).

Table 3-5: Comparison of Cloud Platforms

 Resources Monitoring UI MI Relevant features

Amazon E2C Computing,
Networking,
Storage, Network
functions
(Firewall), Dockers,
Interfaces to AWS
cloud, Relational
Databases

CPU, Memory, Network,
Disks, Swap, Page file

GUI
(Web)
, CLI

- Horizontal and vertical
scalability.

Microsoft
Azure

Computing,
Networking,
Storage, Databases

CPU, Disks, Memory,
Network, Packets, Pages,
Swap

GUI
(Web)
, CLI

- Horizontal and vertical
scalability.

Google Cloud
Engine

Computing,
Networking,
Storage, Network
functions (Firewall,
VPN), Data locality
(regions & zones)

Requests, Latency, Loading
Latency, Error Details, Traffic,
Utilization, Instances,
Memory Usage, Memcache

GUI
(Web)
, CLI

- Live migration; horizontal and
vertical scalability.

VMware
vCloud Air

Computing,
Networking,
Storage

Time, Customer, Host DNS
Name, Host RAM, Capacity
Remaining, Alerts, Network
Statistics, Memory, CPU

GUI
(Web)

GUI
(Web)
, CLI

Live migration and storage
migration; horizontal and vertical
scalability; bandwidth
reservation for traffic pools
(management, migration, virtual
machine traffic).

Open-Stack Computing,
Networking,
Storage, Network
functions (Firewall,
Routers, Load
Balancer, VPN)

Sum of Virtual CPUs; Memory
allocated; Disk sizes; CPUs,
memory and disk sizes of the
host machine; CPU, memory,
I/O and network statistics for
an instance; Diagnostic
statistics (r/w, packets,
errors), Tenant statistics

GUI CLI,
AWS,
API

Live migration; horizontal and
vertical scalability; three
scheduling disciplines (simple
scheduler, chance scheduler and
availability zone scheduler); traffic
shaping and rate limiting.

Eucalyptus
(Used by HP
Enterprise)

Computing,
Networking,
Storage

Performance and alarms on
CPU, Memory,Storage, I/O

GUI,
REST,
SOAP
(XML)

GUI
(Web)

Horizontal and vertical
scalability; several scheduler
disciplines (same as OpenStack).

CloudStack Computing,
Networking,
Storage, Network
functions (Firewall,
VPN)

Virtual Machine Usage;
Network statistics; Disk
Volume Usage; Template, ISO,
Snapshot Usage; Load
Balancer Usage; Network
Offering Usage; VPN User
Usage

GUI
(Web)

GUI
(Web)

Live migration and storage
migration; horizontal and vertical
scalability; FirstFit scheduler
discipline; network throttling;
static assignment of VM and
storage to physical resources.

OpenNebula Computing,
Networking,
Storage, Images

VM Start Time, End Time;
Assigned Memory;
Number of CPUs;
Data received from the
network; Data sent to the
network

GUI
(Web)

GUI
(Web)

Live and cold migration;
horizontal and vertical scalability;
several scheduler policies
(Packing, Striping, Load-aware,
Fixed); traffic control
(bandwidth).

Regarding migration, it is roughly distinguished among:

 live migration of VM instances, i.e., only computing is moved, while the storage is shared;

 storage migration, when only the storage is moved to a different location;

 cold migration, that means the VM is saved and VM files are transferred to the new resource.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

37 / 83

Regarding scheduling policies we will refer later on when deployment related issues are addressed.

3.2.2.2 SDN/NFV Platforms

In the following, representative SDN and NFV platforms are presented. Although some of them just

released or about to be released, they are presented due to their innovative and promising

characteristics.

3.2.2.2.1 OpenDaylight

OpenDaylight [38] is an open platform for network programmability to enable SDN and NFV for

networks at any size and scale. OpenDaylight software is a combination of components including a

fully pluggable controller, interfaces, protocol plug-ins and applications. There is integration with

OpenStack cloud software, including improvements in the Open vSwitch Database Integration project,

and new OpenStack features such as Security Groups, Distributed Virtual Router and Load Balancing-

as-a-Service.

OpenDaylight layered structure is shown in Figure 3-9. The controller exposes open northbound APIs

which are used by applications. OpenDaylight supports the OSGi framework and bidirectional REST for

the northbound API. The business logic and algorithms reside in the applications. These applications

use the controller to gather network intelligence, run algorithms to perform analytics, and then use the

controller to orchestrate the new rules, if any, throughout the network. The controller platform itself

contains a collection of dynamically pluggable modules to perform needed network tasks. Platform

oriented services and other extensions can also be inserted into the controller platform for enhanced

SDN functionality. The southbound interface is capable of supporting multiple protocols (as separate

plugins), e.g. OpenFlow 1.0, OpenFlow 1.3, BGP-LS, etc. These modules are dynamically linked into a

Service Abstraction Layer (SAL).

Figure 3-9: Source [38] OpenDaylight architecture

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

38 / 83

3.2.2.2.2 OpenContrail

OpenContrail [39] is an open source platform that provides all the necessary components for network

virtualization–SDN controller, virtual router, analytics engine, and published northbound APIs. It has

an extensive REST API to configure and gather operational and analytics data from the system.

OpenContrail can act as a fundamental network platform for cloud infrastructure. The key aspects of

the system are: (1) Network Virtualization; Virtual networks are the basic building block of the

OpenContrail approach, (2) Network Programmability and Automation; OpenContrail uses a well-

defined data model to describe the desired state of the network. It then translates that information

into configuration needed by each control node and virtual router, (3) Big Data for Infrastructure: The

analytics engine is designed for very large scale ingestion and querying of structured and unstructured

data. OpenContrail interoperates directly with any network platform that supports the existing

BGP/MPLS L3VPN standard for network virtualization. Furthermore, it is modular and integrates into

open cloud orchestration platforms such as OpenStack, Cloudstack, and is currently supported across

multiple Linux distributions and hypervisors.

3.2.2.2.3 Atrium

Open Networking Foundation [40] is about to release Atrium 2015/A, an open source SDN

distribution that integrates previously standalone open source components. Atrium 2015/A,

incorporates the Border Gateway Protocol (BGP) (including Quagga BGP stack), the Open Network

Operating System (ONOS) and Open Compute Project (OCP) components. The software elements run

in either controllers or switches, communicating using OpenFlow protocol.

3.2.2.2.4 OPNFV

The OPNFV community [41] is collaborating on a carrier-grade, integrated, open source platform to

accelerate the introduction of new NFV products and services. The scope of OPNFV’s initial release

(OPNFV Arno) is focused on building NFV Infrastructure (NFVI) and Virtualized Infrastructure

Management (VIM) by integrating components from upstream projects such as OpenDaylight,

OpenStack, Ceph Storage, KVM, Open vSwitch, and Linux (Figure 3-10). These components, along with

application programmable interfaces (APIs) to other NFV elements form the basic infrastructure

required for Virtualized Network Functions (VNF) and Management and Network Orchestration

(MANO) components. OPNFV’s goal is to increase performance and power efficiency; improve

reliability, availability, and serviceability; and deliver comprehensive platform instrumentation.

Figure 3-10: Source [41] OPNFV Arno Overview Diagram

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

39 / 83

3.2.2.3 Other Orchestration Frameworks

In the following, representative orchestration frameworks are presented which provide a higher level

application specific management, orchestration and automation.

3.2.2.3.1 Cloudify

Cloudify [42] is an open-source framework which allows automation of operational flows from both

orchestration and maintenance perspectives. An application in its entirety (Infrastructure,

Middleware, Application Code, Scripts, Tool Configuration, Metrics and Logs) may be described in

what is called a blueprint. Written in YAML format, a blueprint defines the complete lifecycle of each

part of an application. Cloudify will launch the compute instances, and configure network and security

while it will execute scripts or configuration management tools to configure the servers and deploy

middleware and code.

The suite has a strong focus on deployment modeling and management, which is based on the TOSCA

standard. Starting with a concrete topology, workflows can be defined for deployment, and

undeployment of the topology components. It is also possible to update a deployed topology without

the need for a full uninstall-install cycle.

Orchestration is based on logging and monitoring of the deployment, and deployment environment

state. Failover and Resource scaling is possible through custom workflow scripts that are triggered by

particular monitoring events.

Configuration and provisioning of cloud resources is performed through Python-based custom

workflow scripts or by targeting specialized tools such Chef, Puppet, and SaltStack, which can be

integrated to the suite through plugins.

Cloudify interoperates with Openstack, Cloudstack, Docker and other cloud technologies.

Furthermore, provides the full end-to-end lifecycle of NFV orchestration through TOSCA-based [43]

YAML blueprint.

3.2.2.3.2 ConductR

ConductR [62] is an application management solution for microservice-based applications running on

an Akka cluster. An Akka cluster consists of nodes hosted in multiple and varying system

configurations, with the single requirement that these configurations are equipped with a JVM. Cluster

nodes can be seamlessly added and removed, through a cluster membership system based on

Amazon's Dynamo.

ConductR provides resource provisioning for the cluster nodes by targeting third party tools such as

Amazon EC2, Docker, Puppet, Chef, and Ansible through a RESTful API.

Application deployment is done with application/service bundles. ConductR optimally distributes the

application components to the cluster, in nodes that have the free resources that the components

require. ConductR supports deployment of loosely coupled components providing automatic service

discovery.

Failover management includes automatic replication of unavailable microservices to healthy nodes

and support for redundant application instances.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

40 / 83

3.3 Applications Profiling, Deployment and Orchestration

Application deployment is the last set of actions before having the software up and running. In the

case of Highly Distributed Applications, this can be a complex and hard task, which becomes even

more complicated due to the need for coordination and management of the various service

components of such an application.

An initial deployment of an application requires an initial estimation of the required resources to be

acquired from the infrastructure along with several constraints to be met when the application is

deployed. Embedding an HDA to a programmable infrastructure while satisfying constraints either

coming from the application side or the provider’s side is not a trivial task; efficient embedding

algorithms have to be devised. Furthermore, initially acquired resources may not be enough to serve

workload during runtime and the need of more resources to be allocated to drive a reconfiguration

process vertically up or horizontally out scaling the application in order to sustain application’s

uninterruptible execution and performance may arise. On the other hand, underutilized resources

already allocated for an application may also drive a reconfiguration process to release them in favor

of efficient usage of available resources; scaling the application vertically down or horizontally in.

Reconfigurations may be several as well during the runtime of an application in order to meet either

application’s or provider’s objectives. Application profiling as a process to discover in detail an

application’s resource needs at different types and volumes of workload as well as the process of

predicting workloads during an application’s runtime, are considered to provide necessary knowledge

for driving initial application deployment and several required reconfigurations towards meeting

objectives. In such an environment all decisions and directed actions towards meeting goals and

satisfying objectives while having a thorough view of each running application, applications about to

be deployed and the infrastructure resources and state fall into the duties of the Orchestration

process, a responsibility of the ARCADIA smart controller.

In the following, approaches in application profiling as well as related matters are presented while

next application deployment and orchestration is analyzed in respect to already presented theoretical

and illustrated approaches.

3.3.1 Application Profiling

During runtime an application utilizes compute, storage and network resources. Most commonly in the

majority of cases, (1) the mapping of the workload mix and volume to the required resources is

not known and (2) workload to be served and resources needed during application’s lifetime

are not known as well.

An application is required to be able, during runtime to cope with the demand while satisfying QoS

constraints and not unnecessarily reserving valuable resources. Scaling an application either

vertically or horizontally to utilize more resources when needed, not only it is not possible at all times

but also even if there is adequate resources’ availability it is not possible to happen on the fly and a

non-negligible time interval is required until satisfied. This fact may lead to a serious compromise

of the offered QoS or even lead to a service disruption unless predicted.

An initial estimation of the required resources is necessary when an application is about to be

deployed to the cloud and run for the first time. During runtime and according to the demand the

application scales accordingly; new resources may have to be assigned to the application or

resources to be released. The whole process should be automated; often referred as auto-scaling [66].

ARCADIA framework considers the lifetime of an application, starting from its development to cloud

deployment, running and termination. Considering and leading the development of an application for

sure it is an advantage to be exploited in the direction to meet the objectives aforementioned.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

41 / 83

3.3.1.1 Application Profiling, Load testing, Stress testing

Traditionally software profiling methods aided developers towards program optimization by

revealing, through dynamic program analysis, information about memory and time complexity of

programs, frequency and duration of function calls, use of instruction sets etc. Information gathered

through program profiling could help developers optimize code towards debugging and better

performance as well as towards testing and adapting accordingly program execution for different

hardware architectures. Profiling is achieved by instrumenting either the program source code or the

program binary executable by the profiler tool which records/measures several information/metrics

during program’s runtime.

Profiling becomes more complex when it comes to cloud applications since most commonly several

software entities form a structured system to deliver a service over variable virtualized architectures.

Roughly, it may be distinguished to application-level profiling and function-level profiling [69].

Profiling information may prove quite handy when deploying an application for execution over cloud

architectures [70]. For example, deploying an application component with frequent storage I/O (such

as a database) into a system where storage I/O is the bottleneck is something that could be avoided

when profiling information is available.

Load testing is the procedure of analyzing software applications made for multi-user access by

subjecting the application to different number of virtual and live users generating different types of

loads while measuring performance metrics. Such a procedure reveals performance and resources

utilization related information versus different workload mix and volume produced by

different behavioral patterns.

Stress testing is a procedure related to load testing but with the scope of testing an application

beyond what is considered “normal operation”. It considers heavy load while focuses on user access

behavioral patterns that don’t fall into the area of “correct behavior” under “normal

circumstances”.

Load testing and stress testing are procedures usually performed before a service goes live with

considerations regarding user access and the system where the service is deployed that attempt to be

quite close to the real ones. Although such information is rarely available when a cloud application is

deployed, it is obvious that it could greatly provide a good insight, yet not thorough, on how much of

resource is required for an application to cope with a specific workload while maintaining required QoS

characteristics [71].

3.3.1.2 Virtualization overhead

Resource requirements of applications differ whether they are running on physical machines or to a

virtualized environment. This is due to overheads caused by the virtualization layer. Furthermore

these overheads differ and they are specific to the type and implementation of the virtualization

solution [63] [64]. For example, often, the “amount” of CPU overhead is directly proportional to the

“amount” of performed I/O processing. When an application is transferred to a virtualized

environment it would be useful to have an estimate of the mapping between the native (when running

to a physical machine) resources usage profile and the virtualized one. However in most cases not only

the mapping is not available but as well the native resources usage profile.

In [63] the authors develop a set of micro-benchmarks to profile the different types of virtualization

overhead on a given platform, and a regression-based model that maps the native system usage profile

into a virtualized one. Their approach focuses on estimating the CPU requirements of applications

when they are transferred to a virtual environment.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

42 / 83

3.3.1.3 Auto-scaling techniques

It is desirable the application to scale accordingly to the workload it has to serve, maintaining

required QoS guarantees at all times. In other words, at all times the application should ideally have

available for use the resources it needs to serve the demand, in a way that does not interrupts its

operation while at the same time it does not waste/reserves unneeded valuable resources. The

scaling system should be automatic (auto-scaling) regarding the application part as well as the

provided resources part [66].

Horizontal scaling is the scaling method of choice for many cloud systems since it provides a way of

scaling the application to meet its demands in an uninterruptible way. Horizontal scaling requires from

the application to support a way of cloning itself in a way, in order to be deployed in another virtual

container to support part of the demand. Although vertical scaling seems simpler since it only requires

increasing resources of the virtual container hosting the application, in fact it is not appropriate to

support application’s uninterruptible operation since most of the operating systems does not support on-

the-fly changes (without rebooting) on the available resources (e.g. CPU or memory) of a running

instance. Thus, horizontal scaling is mostly preferred in cloud systems.

Auto-scaling techniques are distinguished to reactive and proactive (or predictive). Reactive

techniques refer to those methods that react to the current system and/or application state which

states are decided from the latest values of monitored variables. Proactive (or predictive) techniques

attempt to scale resources in advance of demand by predicting the latter. Reactive techniques may

prove inefficient to support uninterruptible at all times operation of the application especially when

there is a sudden demand burst (flash crowd or Slashdot effect). This is due to the fact that acquiring

new resources and instantiating a new execution environment (virtual container) requires a non-

negligible time interval. On the other hand proactive techniques are more promising; in the worst case

they may miss to predict demand and act as a reactive technique.

A bad performing auto-scaling technique may lead to problems such as under-provisioning; the

application does not have enough resources, over-provisioning; the application reserves more

resources than the ones really needed, and oscillation; scaling actions are carried out too quickly, for

the application to see the impact of the scaling action.

Auto-scaling decisions heavily rely on monitoring several performance metrics. Their

performance will depend on the quality of the available metrics, the sampling granularity, and the

overheads (and costs) of obtaining the metrics [66].

Most auto-scaling techniques presented fall into one or more; considering also hybrid techniques, of

the following categories:

1. Threshold-based rules (or policies)

2. Reinforcement learning

3. Queuing theory

4. Control theory

5. Time series analysis

Threshold-based rules (or policies) belong to the reactive category. Scaling decisions are triggered

based on selected performance metrics and predefined thresholds. These reactive techniques are most

commonly used by the majority of commercial cloud providers.

Time-series analysis is a purely proactive approach. Historical data for a monitored variable are kept

as a series of data points and utilized to detect patterns and predict (forecast) future values.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

43 / 83

Reinforcement learning, queuing theory and control theory can be used with both reactive and

proactive approaches. Queuing theory and control theory rely on modeling the system. Queuing

theory attempts to catch the relationship between jobs arriving and leaving the system [65] while

control theory attempts to define a controller to automatically adjust the required resources to the

application demands. Reinforcement learning attempts to learn the most suitable action for each

particular state with a trial-and-error approach.

Predicting resources needed by an application for the next period in fact requires: predicting workload

(type and volume) [72] and estimating resources needed by the application to serve this kind of

demand.

Since realizing auto-scaling requires the synergy of several components providing and processing data

during an application’s lifetime, it is clear that special care is required regarding representation,

data handling and coordination. In [68] the authors extend the Topology and Orchestration

Specification for Cloud Applications (TOSCA); an emerging framework capturing the description of

cloud application and infrastructure services, the relationships between parts of the services, and the

operational behavior of these services (e.g., deploy, patch, shutdown), towards managing the dynamic

scaling of cloud applications at run-time (monitor running applications, describe QoS and depict plans

to scale up or down applications [67]) while describing how this extension (called Elastic-TOSCA) can

be used to support a variety of analytical model-based approaches for elasticity management in

complex cloud applications.

ARCADIA framework considers the lifetime of an application, starting from its development to cloud

deployment, running and termination. The fact that the application is not as usual considered from the

time it is a binary executable to be deployed, surely provides an advantage. It is considered that source

code profiling information and proper annotations in conjunction to load testing if possible, prior

to application deployment, may drive hybrid auto-scaling techniques that will exhibit high

performance. Representation, data handling and coordination of auto-scaling is considered a

crucial task for the success of the developed methods.

3.3.2 Application deployment and orchestration

The lifecycle of an HDA starts with HDA development which produces an executable which is

annotated and enriched with processes capable of feeding/getting information to/from the

infrastructure. Then follows HDA onboarding at which phase resources are initially allocated to the

HDA application in order to execute under the considerations of optimally meeting the objectives and

pass to the HDA operation phase. The next phase in HDA’s lifecycle is the HDA optimization

management at which phase undisrupted guaranteed operation of the HDA is ensured along with

objectives regarding HDA operation and infrastructure usage. Finally at some time HDA terminates

and resources allocated are released.

In order the HDA to be onboarded / embedded / deployed to the infrastructure, at least some initial

resources’ requirements and performance constraints should accompany the applications.

Annotations on the binary/package level will provide that information to that component of the smart

controller which is responsible to allocate resources so that the HDA starts its execution/operation.

During operation of an HDA more resources may be required to be allocated to support its operation

meeting required performance guarantees while the HDA may be required to adapt its operation to

the dynamic infrastructure environment so that objectives set regarding infrastructure usage are also

met.

Applications will be appropriately annotated at the execution-package level in order to facilitate

initial configuration of the infrastructure in terms of resources reservation and constraints

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

44 / 83

satisfaction for application’s proper envisaged execution; as well at the source-code level in order to

facilitate maintaining application’s performance during runtime and smooth infrastructure

reconfigurations towards satisfying complex objectives.

The use of annotations either at the package level or at the code level is a way for the application to

pass valid information to the component handling the configuration and use of the infrastructure

which in our case is a part of the Smart controller. To complete the interaction between the

application and the infrastructure, the latter through the smart controller as well, provides

information about the runtime environment e.g. the values of various performance monitors,

exploitable by the application towards two directions; to adapt accordingly in order preserve its

performance characteristics and to contribute towards the objectives set regarding the operation

of the infrastructure e.g. maximize its capacity or guaranteed performance or energy efficiency etc..

Thus, on one hand an application requires to acquire resources and guarantees from the

infrastructure to meet its objectives regarding its execution through its lifetime while the

infrastructure provider pursues to facilitate applications’ execution while satisfying its own

objectives regarding infrastructure’s usage. Objectives to be met for both sides are not necessarily

contradicting; however both sides should be taken into account towards mutual benefit.

Furthermore, an application apart from providing annotations and adapting to the conditions of the

runtime environment should also be developed in a form to facilitate its embedding to the

infrastructure. For example, an application requiring extra resources during execution would have

more changes getting them if it is able not only to scale vertically (scale up) but to scale horizontally

(scale out) as well. While an application that scales up requires more resources (e.g. CPU, memory)

from its hosting environment (e.g. a Virtual machine), when it scales out it is able to initiate one or

more application instances to new hosting environments (e.g. one or more Virtual machines) in order

to acquire needed extra resources to serve demand. Thus, the ability to scale out increases the

probability for its needs to be satisfied by the infrastructure.

On the other hand, the infrastructure should be flexible to facilitate applications embedding.

Software defined programmable infrastructure gives the potential to illustrate such kind of flexibility.

For example, an application (service) requiring secure access to it (as a policy enforcement

requirement), may require access to go through a firewall or/and a packet filter. The ability to on

demand instantiate a firewall and/or a packet filter as well increases the probability for application’s

needs to be satisfied by the infrastructure versus the case where a constant number of legacy

middleboxes were operating at certain locations of the infrastructure.

The problem we are addressing and will become clear later on when all aspects are analyzed is how to

assign resources and satisfy constraints for applications requiring operating (executing) over a given

infrastructure so that objectives set are met. We will refer to this problem as the Highly Distributed

Application (HDA) Embedding problem.

3.3.2.1 Application Scalability

If resources initially reserved prove to be inadequate to support an HDA’s operation (e.g. an increased

demand for an illustrated service) then extra resources will be requested so that the HDA to scale up

(vertical scaling) or scale out (horizontal scaling). An HDA requesting to scale up will request more

resources to be assigned to the already allocated execution environments (e.g. VMs and/or containers)

either for all application tiers in its service chain or for a subset of them. An HDA requesting to scale

out will request to initiate instances in new hosting environments (e.g. new VMs and/or containers)

for either each application tier in its service or for a subset of them.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

45 / 83

Thus, scaling the HDA application does not imply that all of the application tiers in the HDA

service chain are required to scale. In other words the workload of each application in the HDA

network may be different during runtime. Furthermore, the amount of resources required by an

application as it is obvious is not necessarily proportional to its workload; e.g. doubled workload

does not necessarily imply doubled or even constantly proportional in some way utilization of

resources. Not only computational complexity of the algorithms illustrated by an application but as well

implementation specifics or even bugs, governs the relation between utilization of resources and

workload. At the same time, utilization of each resource type (e.g. memory, CPU etc.) does not

necessarily increase the same way as workload increases; e.g. memory utilized may increase

slowly or not at all as workload increases, while CPU demand to be increasing proportionally to the

workload. Although scaling out an application may provide more choices to allocate required

resources, it seems to depend on the application if in terms of absolute portion of resources and for a

specific workload, scaling up will require less or more resources than scaling out.

The way an HDA scales may also be dependent to the type of the workload or workload mix

requiring during runtime different applications in the HDA network to scale as needed. When

resources allocated to an HDA application prove to be excess of the needed ones then it scales

down or scales in releasing and making available resources. Releasing resources faces the same

considerations as acquiring resources.

A thorough profiling of the HDA application revealing the relation between workload and resources

utilization would be highly desirable as describes in previous section; however this is not possible in many

of the cases.

Furthermore executing an application in a virtualization environment imposes a virtualization overhead

meaning that resources needed in for an application to run in a physical environment are less than those

needed to run in virtual machine due to the virtualization layer.

The amount of resources needed is rarely static, varying according to changes in the workload, the

workload mix, and internal application phases and changes. Deciding how much resource to allocate is

non-trivial since resource needs often change with time and characterizing runtime application

behavior is difficult. To maintain application’s proper execution, application resource needs must

be predicted in advance in order to adjust resource allocations ahead of the needs. Reactive

allocation of resources would probably lead to interruptions in applications continuous operation

violating performance requirements.

If for each application the relation between workload volume and mix with the utilization of resources

was known then allocating in advance of need resources would only require predicting workload

volume and mix for the next period. Since this relation is most commonly not known either should be

estimated or resources needs simply predicted for the next period probably according to known past

patterns of usage.

3.3.2.2 Programmable infrastructure

Resources from a heterogeneous-diverse dynamic underlying infrastructure; a mixture of physical and

virtual resources, have to be assigned, initially and during runtime, to an HDA in order to execute.

Several infrastructure domains are considered, with each one controlled by a smart controller. An

HDA embedding may illustrate within the same domain (intra domain) or across several domains

(inter domain).

Each infrastructure makes available several Programmable Resources which span from configured

IaaS frameworks, programmable physical switching/routing equipment, programmable firewalls,

Application Servers, modularized Software Entities (Databases, HTTP Proxies etc.).

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

46 / 83

An infrastructure maybe thought as a network of geographically dispersed Resources Repositories

where one or more Resources Pools of a node type exist. Recursion may stand either for resources

repositories or pools; e.g. a resource pool within a resource pool. For example a repository maybe a

data center where several hypervisors as resource pools for Virtual machines (VMs) exist, several VMs

as resource pools for containers (e.g. LinuX Containers), several Middleboxes of several types

illustrated in VMs (e.g. firewall elements, packet filters etc.), physical machines, physical or virtual

switching/routing equipment.

An HDAs service chain maybe illustrated as an overlay either within a repository or a resource pool

or across various repositories of a domain or across various repositories several domains.

It becomes obvious that an ideal environment would be a physical infrastructure able to have the

flexibility of illustrating every possible node type or link as a virtual one upon request and on the

fly while not depending on specialized hardware existing in specific locations. In such an environment

an HDA network of apps would be possible to map to virtual nodes and links in order to operate within a

single resource pool of VMs.

3.3.2.3 Highly Distributed Application Embedding (HDAE) problem

An HDA as a service chain requires executing over a given infrastructure. Required resources should

be allocated in order each application tier and network function in the HDA service chain to execute

while data links among them should be illustrated as needed. Furthermore, required by the HDA

performance constraints should be met and required policies realized (e.g. secure access to the HDA,

redundancy and fault tolerance etc.).

At the same time realization of the HDA service chain over the infrastructure should be done in a way

that objectives set regarding infrastructure operation and usage should be met. For example, such

objectives may be minimizing the energy consumed from the infrastructure’s operation or maximizing

the service capacity of the infrastructure (number of HDA applications that operate over the

infrastructure) or maximizing performance guarantees to operating HDAs.

Several HDAs requests for embedding and operating over the infrastructure come at arbitrary

moments in time. HDAs are embedded/mapped to the infrastructure and operate. During operation an

HDA may require more resources than the ones allocated to support its operation or may release

resources allocated but not needed. At some time an HDA terminates its operation and releases/makes

available all the resources allocated for its operation.

We call the problem of embedding an HDA to a given infrastructure under the considerations and

restrictions previously mentioned as the HDA embedding (HDAE) problem. In the offline version of

the HDAE problem all requests are apriori known while in the realistic online version a request is

known only as it arrives in time.

The problem maybe expressed as an optimization problem according to which, given a specific request

with specific resources demands and a resources constrained infrastructure (substrate), we seek the

positions in the infrastructure where applications will execute at allocated resources so that constraints

are satisfied and a cost/revenue function reflecting the objectives is minimized/maximized.

Obtaining a solution to the problem may be quite computational intensive and time consuming,

especially as the input to the problem gets large. This is not desired in our case where decisions should be

taken on the fly especially when an HDA is in operation mode and continuous operation with quality

characteristics should be maintained. This strict restriction relaxes somehow when initial HDA

embedding (HDA is not yet in operation phase) is considered.

Several factors should be avoided and expressed as constraints when placing and assigning

resources to HDAs in an optimal way. Such indicative factors to be avoided are Resource contention;

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

47 / 83

a single resource or utility is being accessed by two different applications at the same time, Scarcity of

resources; there are not enough resources to deal with the workload, Resource fragmentation;

valuable resources lie around in a highly disorganized manner, Over-provisioning; more resources

are being assigned than required, and Under-provisioning; not adequate resources assigned.

The HDA embedding problem may be considered as an extension of already studied in the literature

problems such as the Virtual Network Embedding (VNE) problem, the Virtual Data Center

Embedding (VDCE) problem and the Cloud Application Embedding (CAE) problem, to which we

will refer to the related work that follows.

3.3.2.4 Related Work to the HDA embedding problem

The Virtual Network Embedding (VNE) problem [74] is the problem of assigning physical resources

from a substrate network to a requested virtual network, with constraints to virtual nodes and virtual

links. Given a substrate network with capacity constrained substrate resources and a Virtual Network

request with capacity constraints on Virtual nodes and links the task is to assign virtual nodes and

links to substrate nodes and links and allocate resources so that an objective function (reflecting e.g.

VN acceptance ratio or overall energy consumption or else) is maximized or minimized accordingly.

The VNE problem in the majority of works has been studied for assigning nodes and links to a VN

request by considering respectively only CPU and bandwidth as the critical resources (see Figure

3-11). This optimality has been computed with regard to several different single or multi objectives,

such as service capacity, QoS, economical profit, survivability, energy-efficiency (see Figure 3-12),

security of the networks.

Figure 3-11: Source [73] Virtual Network
Embedding (VNE) example

Figure 3-12: Source [73] Virtual Network
Embedding (VNE) example with energy efficiency as

objective

Finding optimal solution to the VN embedding problem is computationally intractable and time

consuming. Even in the offline case, the problem is NP-hard [75, 76, 77, 78, 79]; there is no polynomial

time algorithm to give the optimal solution, as it is related to the multi-way separator problem. A

polynomial time algorithm is an algorithm which its running time is upper - bounded by a polynomial in

the size of the input for the algorithm. For large problem sizes (i.e. large substrate networks and virtual

network requests size) the time to find the optimal solution becomes unaffordable. The online

problem becomes even more difficult to solve. Exact solutions resulting to a global optimum are

considered appropriate only for small instances of the problem. Efficient heuristic-based solutions not

fixed to obtain a global optimum and resulting with good solutions in short execution time suit this

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

48 / 83

problem case. Heuristic solutions may phase the problem that they can get stuck in a local optimum

that can be far away from the real optimum. Metaheuristic solutions improve the quality of the result

by escaping from local optima in reasonable time.

VNE is an online problem. VN requests (VNRs) will not be known in advance. Instead, they arrive to

the system dynamically and can stay in the network for an arbitrary amount of time. VNE algorithm

has to handle the VNRs as they arrive, rather than attending a set of VNRs at once (offline VNE).

Remapping of whole VNs or partial VN relocation is necessary to ensure performance and objectives;

see Figure 3-13 where a needed relocation is exhibited in order a new virtual network request to be

accepted and embedded to the substrate.

Figure 3-13: Source [73] An example of reconfiguration in Virtual Network Embedding (VNE)

VN assignment shares similarities with older problems such as the embedding of Virtual Private

Networks [80], with the difference that in that case there are only bandwidth constraints, as well as

with the network testbed mapping problem [79, 81]. In the VN embedding problem there are capacity

and placement requirements on both virtual nodes and virtual links while a node and a link is shared

by multiple VN requests. This makes the problem hard. There are a few works attempting to address

the problem more generally, while the majority restricts the problem by studying it in specific VN

topologies or considering only the offline case or assuming infinity capacities or even ignoring one

part of the requirements (either for nodes or the links).

In [75] the authors recognizing that all of previous research focused on designing heuristic-based

algorithms with clear separation between the node mapping and the link mapping phases provide

online VN embedding algorithms with a better coordination between the two phases in order to

expand the solution space. They consider CPU as the critical resource of a node and bandwidth as the

critical resource of a link. A VN request consists of virtual nodes with CPU constraints and virtual links

with bandwidth constraints while at the same time location constraints for each virtual node are also

considered. The authors produce an augmented graph (an extension of the physical network graph)

including meta-nodes (which are the virtual nodes requested), with meta-links (with unlimited

capacity) to those physical nodes that satisfy the constraints. This mapping facilitates their proposed

solution. They treat each virtual link with bandwidth constraints as a commodity consisting of a pair of

meta-nodes. As a result, finding an optimal flow for the commodity is equivalent to mapping the

virtual link in an optimal way.

In [77] the authors focus and provide heuristics on two versions of the VN assignment problem, one

without reconfiguration and the other with selective reconfiguration of the most critical VNs. In [78]

the authors study the design of the substrate network to enable simpler embedding algorithms and

more efficient use of resources, without restricting the problem space. They simplify virtual link

embedding by allowing the substrate network to split a virtual link over multiple substrate paths and

by employing path migration to periodically re-optimize the utilization of the substrate network.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

49 / 83

The Virtual Data Center Embedding (VDCE) problem [82] is the problem of mapping Virtual Data

Center (VDC) components (e.g., virtual machines, virtual switches and links) onto physical nodes and

links. VN embedding models differ from VDC embedding in that they only consider CPU and network

resources while in VDC embedding other resources such as memory and disk also need to be

considered. Furthermore, in the VNE problem, the substrate network usually comprises tens to

hundreds of servers and a virtual network request usually includes tens of VMs. In contrast, in the

VDCA problem, the data centers can comprise thousands of servers and a VDC request can include

hundreds of VMs. These aspects of the VDCE problem impose significant scalability requirements on

the scheduling algorithm. VDCE can be seen as a combination of the bin packing problem and the

multi-commodity flow problem, which are both known to be NP-hard [84]. Presented works in the

literature propose heuristics to provide a solution considering specific data center design

architectures in order to restrict and relax the problem [82, 83] while it has been studied for

deployments in distributed infrastructures (see Figure 3-14) as well [84].

Figure 3-14: Source [84] Virtual Data Centre Embedding (VDCE) example

The Cloud Application Embedding (CAE) problem [85] is the problem of mapping distributed

applications as structured systems that include not only computational and storage entities, but also

policy entities (e.g. load balancers, firewalls, and intrusion prevention boxes) onto cloud data centers.

In Figure 3-15 an example of a two-tier application presented in [85] is shown. The two-tier

application is represented as a flow security graph. Tier 1 and 2 are represented as nodes u1 and u2

respectively. Middleboxes are firewall Fi, load balancer LBi, intrusion prevention system IPSi, i = 1 , 2.

The tuple (50 , 1) means that it needs 50 virtual machines and one fault domain. The Internet clients

are denoted as ue with zero demands on virtual machines and fault domains. The application needs

one copy of each middlebox. Each middlebox requires one fault domain. There are no bandwidth

demands on links since a best effort service is considered.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

50 / 83

Figure 3-15: Source [85] Cloud Application Embedding (CAE) example

Given a cloud data center with servers (hosts several VMs) and middleboxes (hardware based or

software based) with fixed placements the authors of [85] study the problem of embedding an

application encoded as a Flow Security Graph to the infrastructure and propose an online algorithm.

Various specific data center designs are considered as well as middleboxes placements.

Their study motivates the need of flexible policy enforcement mechanisms such as Openflow and

pswitch, and the design of policy-aware data center network architecture.

HDAE problem is an extension of VNE, VDCE and CAE problems. First impression suggests it is a much

harder problem. However taking advantage of the flexibility of the infrastructure considered as well as

the ability to lead appropriately the development of applications to be embedded, initial intuition suggest

that the problem may be severely relaxed.

3.3.2.5 Deployment Scheduling Approaches in Platforms

Briefly, the available scheduling policies in three popular cloud computing platforms (Openstack,

Cloudstack, OpenNebula) are presented. The purpose of these deployment scheduling policies is to

place VMs in available hosts according to selected criteria. As it will become obvious these policies

offered with these platforms are simple and generic; however they provide a base for more complicate

deployment policies to be devised.

The OpenStack’s schedulers filter hosts according to the following criteria:

 Have not been attempted for scheduling purposes (RetryFilter).

 Are in the requested availability zone (AvailabilityZoneFilter).

 Have sufficient RAM available (RamFilter).

 Can service the request (ComputeFilter).

 Satisfy the extra specs associated with the instance type (ComputeCapabilitiesFilter).

 Satisfy any architecture, hypervisor type, or virtual machine mode properties specified on the

instance's image properties (ImagePropertiesFilter).

 Are on a different host than other instances of a group (if requested)

(ServerGroupAntiAffinityFilter).

 Are in a set of group hosts (if requested) (ServerGroupAffinityFilter).

CloudStack offers the following Scheduler discipline:

 FirstFit: This policy selects the first node with enough free resources to host the newly created

virtual machine.

Scheduler policies available in OpenNebula’s Match-making scheduler are:

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

51 / 83

 Packing: This policy minimizes the number of cluster nodes in use by packing the VMs in the

cluster nodes to reduce VM fragmentation (it uses those nodes with more VMs running first).

 Striping: This policy maximizes the resources available to VMs in a node by spreading the VMs

in the cluster nodes (it uses those nodes with less VMs running first).

 Load-aware: This policy maximizes the resources available to VMs in a node by using those

nodes with less load (with more free CPUs).

 Fixed: This policy sorts the hosts manually, by using a priority attribute assigned to each node.

4 ARCADIA Use Cases

4.1 Energy Efficient Cloud Management

Name. Energy-Efficient Cloud Management

Objectives. A Cloud Service Provider exploits the ARCADIA framework to manage its infrastructure in

the most energy efficient manner, while providing its users the required service level.

Description. ACME Inc. is a Cloud Service Provider whose business is based on the Infrastructure-as-

a-Service model. ACME Inc. has recently increased its turnover by cutting down operational costs,

especially the electricity bill for running an installation comprising thousands of computing servers

and networking devices, and by promoting its image as a green and environmental-friendly company.

The key technology for ACME Inc. is the Smart Controller, a software tool that supports the

management staff in taking decisions about the optimal placement of workload according to advanced

criteria of energy-efficiency. The Smart Controller also parses metadata information incorporated into

the software bundles deployed by its clients, in order to know their specific Quality of Service

requirements (communication bandwidth and latency, service downtime, resilience to faults,

availability and dependability). The Smart Controller exploits the cloud management software (e.g.,

OpenStack) to depict a full picture of the current run-time environment, consisting in the current

assignment of services and applications to servers, the current electricity consumption, and the energy

profiles of servers and networking devices. Based on this information, the Smart Controller finds the

optimal allocation of computing and networking resources that minimizes the overall energy

consumption, while providing enough capacity to cope with the short-time fluctuations in the

workload, so to meet all QoS requirements. The Smart Controller automatically applies the new

configuration by migrating applications and services among the installed servers and by updating

network devices accordingly.

Involved roles. Service Providers benefit of an automated tool for applying their policies and

optimization objectives on the underlying infrastructure, in a coherent manner with requirements of

their users. The Smart Controller takes care of combining information from thousands of physical

resources and to find optimal allocation strategies compliant with thousands or millions of

application’s profiles; this task would be unfeasible for human staff. Software Developers should

include specific performance and QoS constraints in their code, together with profile information

about the amount of traffic and workload expected.

Innovation. Current cloud management software (e.g., OpenStack) provides administrators with the

knowledge of the current service allocation in the underlying physical infrastructure and the ability to

migrate services among the servers for management purposes (e.g., hardware maintenance, software

upgrade); there are both graphical dashboards and command line interfaces to accomplish these tasks.

However, information about power consumption and energy profiles of the underlying infrastructure

is not available. ARCADIA will enhance current cloud management software with energy-aware

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

52 / 83

aspects, by integrating the Green Abstraction Layer and its possible extensions. In addition, the Smart

Controller will shift the responsibility of seeking for optimal configurations and of applying them from

human staff to an automated tool, bringing clear benefits in terms of scaling, optimality, response time,

configuration errors. Finally, the characterization of application profiles and the incorporation of

requirements at code level will represent an additional facet in the decision-making process, still not

considered in energy optimization frameworks.

Relationships to the ARCADIA framework. This use case identifies a specific function for the Smart

Controller, when it is deployed by the Cloud Service Provider. This use case also exploits context-

aware model information available as metadata in the source code.

Challenges. i) To integrate power consumption and energy profiles in cloud management software. ii)

To define suitable allocation strategies for energy-efficient cloud operation under performance

constraints coming from application profiling and user requirements. iii) To enhance cloud

management software with suitable APIs for service allocation and infrastructure configuration. iv) To

include profiling information and QoS requirements in the Context-aware programming model. v) To

exploit multipath routing, rate adaptation, standby and other energy saving techniques in the cloud

network.

4.2 Annotated Networking

Name. Annotated networking

Objectives. Software developers are provided the ability to set up their networking functions by

annotated metadata in the source code.

Description. Bill is a software developer at JustSoft.com, who is creating an application made of

several components. He designs the service-chain model for his application (using tools like TOSCA or

similar) and implements all software modules. Bill exploits a context model that allows him to include

specific requirements for deployment and execution of its applications, through the use of source-code

annotations. Among other aspects (e.g., software dependencies, configurations), the context model

allows Bill to define network-related functions that should be set up for his application, like horizontal

scalability of some components, privacy and confidential issues in data exchange, Quality of Service

requirements, resilience to faults of software components, data locality constraints, secure

interconnection to the Internet. Annotations are embedded in the object code as metadata and the

final package is delivered to his colleague John, who is responsible for deployment. JustSoft.com has its

own data center, but John also uses cloud services borrowed from other providers. For most part of his

job, John relies on the Smart Controller deployed at JustSoft.com. The Smart Controller parses the code

metadata, considers the different kinds of requirements (data locality, security, QoS) and decides the

optimal placements of the application’s components inside the local and remote clouds. Taking into

consideration the service chain, the placement plan and the annotated requirements, the Smart

Controller derives the network topology and infers all the network functions needed to interconnect

all the application’s components: virtual switches/routers, load balancers, NAT/firewalls, packet

shapers, traffic queues, encryption/decryption boxes, and so on. The Smart Controller at JustSoft.com

sets up most of these functions as Virtual Network Functions in the local and remote clouds, by

interacting with its peers deployed by other service providers.

Involved roles. Software Developers exploit enhanced context models to embed the description of

network functions required to build their service chains. Their requirement should include

performance constraints, data locality, load balancing, hot-standby for resilience, security and privacy

aspects. DevOps users mostly benefit from the presence of the Smart Controller, which takes the

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

53 / 83

burden of managing many deployment requirements, of finding optimal placement strategies and of

automatically configuring cloud management software. DevOps basically remain in charge of

supervising the whole process and to establish relationships with cloud providers.

Innovation. Today, deployment of applications and services in the cloud is a tedious and error-prone

process, carried out by DevOps through a number of scripting languages. DevOps are responsible to

find the optimal placement of the application modules in different clouds, if data locality and

bandwidth constraints make this solution convenient. The ARCADIA Smart Controller will take over

most of this work, will enable to take into consideration more variables in the decision process, and

will find optimal solutions in less time. Moreover, software developers will be able to demand

networking functions directly, through the context model.

Relationships to the ARCADIA framework. This use case relates to the main components of the

ARCADIA framework: the context model and the Smart Controller. It defines how software developers

should set up networking functions in the application’s lifecycle, starting from the context model, to

the embedding of metadata in the code and to the parsing and interpretation by the Smart Controller.

Moreover, this use cases also envisages the need for interaction and federation among Smart

Controller deployed in different cloud domains.

Challenges. i) To integrate networking aspects in the ARCADIA context model. ii) To build complex

network topologies over multiple clouds, including switching devices, security middleboxes, QoS

functions. iii) To exploit the concept of Virtual Network Functions, in order to avoid the need for

specific hardware. iv) To account for inter-cloud issues, like federation of Smart Controllers.

4.3 Remote Surveillance

Name. Remote surveillance

Objectives. Highly-Distributed Applications exploit data locality and In-Network Programmability

envisaged for Telecoms’ access networks.

Description. Eye@Home Co. is a dynamic and enterprising company providing home security

solutions. It is undertaking an emerging business model, based on “softwarization” of remote

surveillance systems. According to this model, the company directly gathers data from several

heterogeneous surveillance hardware installed at clients’ homes (cameras, motions sensors, intrusion

detectors, fire and gas alarms, baby monitors), processes them, and provides different kinds of alarms,

depending on the user wishes. This approach replaces expensive management hardware at home with

more flexible and manageable software in the cloud, enabling the company to provide very advanced

monitoring and surveillance services based on facial and motion recognition, context-awareness and

on-line dynamic reprogrammability. The service provided by Eye@Home notifies the clients by

several media (text messages, voice calls, emails) and gives them the opportunity to react by accessing

cameras, by checking the status of sensors, by activating specific devices (turning on lights, closing

windows), by calling emergency numbers, and so on. Given the need to continuously monitor video

from several cameras, Eye@Home has built a Highly-Distributed Application, so data processing

modules can be placed close to the clients’ homes, by exploiting cloud services offered by the same

Network Operators that already provide network access. To implement the Eye@Home application,

software developers have exploited a rich context model, in order to specify data locality principles

(place an instance of the data processing module close to each client’s home), security requirements

(use data encryption, authentication and integrity while exchanging messages), dependability and

resilience (load balancing, hot-standby), and Quality of Service constraints (transcode the video from

cameras according to the current user’s device and access network, send video only when required,

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

54 / 83

etc.). Eye@Home has deployed its service in the cloud infrastructure provided by ACME Inc., where a

Smart Controller is present and takes the responsibility to set up replicas in Network Operators’

clouds, to scale them horizontally for redundancy and for managing an increasing load, and to set up

all virtual network functions in the different clouds to interconnect the distributed modules in a secure

and dependable way.

Involved roles. Software Developers exploit i) software development paradigms to build Highly-

Distributed Applications and ii) context models to denote sets of relationships, dependencies, service

chains, constraints that drive and automate the deployment process. DevOps provide minor inputs

during the deployment phase, and are mainly responsible to include all cloud systems that enable to

place part of the application as close as possible to each client. Network Operators provide computing

services following the IaaS model in addition to basic network connectivity, enabling third-party

software providers to exploit locality principles in placing their applications and novel business

models based on virtualization of home devices. Network Operators also deploy Smart Controllers in

their clouds, in order to allow federation with other domains and optimal placement of HDAs.

Innovation. Today, many software applications run on dedicated commodity hardware at home (for

instance, set-top boxes, home automation systems, media stations, game consoles, home surveillance

systems). There are several drawbacks behind this approach: the environmental impact (for

production and disposal of many short-lived devices), large energy waste (due to the need to keep

most devices always on to be ready-to-use and to be controlled remotely for maintenance and

updates), and heavy capability limitations (due to limited computing and storage resources available).

The software development paradigms and the context models in ARCADIA, together with In-Network

Programmability tackled by other projects (like the Horizon 2020 INPUT project), will enable to create

virtual instances of many appliances and to place them very close to the home, with very similar

service levels but unprecedented opportunities in terms of energy-saving, software customization,

service composition and business models.

Relationships to the ARCADIA framework. This use case relates to most components of the

ARCADIA framework. It needs software development paradigms to build Highly-Distributed

Applications in a fast and error-prone manner, context-aware models to drive the deployment of the

application according to locality principles and QoS constraints, Smart Controllers to take over the

deployment process and to deal with the complexity of setting up Highly-Distributed Applications that

interacts with many external heterogeneous hardware components, cloud management strategies that

combine efficient execution of a huge number of software components that may be idle most of the

time with strong guarantees on response times, availability, dependability and security.

Challenges. i) To provide suitable software development paradigms for building Highly-Distributed

Applications. ii) To include locality principles and QoS requirements in the ARCADIA context model.

iii) To tackle the need for deploying multiple instances of the same software module with different

configurations, to deal with heterogeneous monitoring hardware deployed at home. iii) To guarantee

strong QoS constraints, in order to have the application working as it were in the house LAN. iv) To

ensure proper isolation between data from different clients and strong security measures.

4.4 Enterprise Networking

Title: Enterprise Networking

Objectives: Develop an application for the efficient management of heterogeneous network

infrastructure provided to an enterprise customer with branches distributed throughout large

geographical areas.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

55 / 83

Description

In this use case, we consider the case of an Enterprise customer, which has an extensive network with

customized settings, including multiple Branch Offices (BOs) and Headquarters (HQ) distributed

throughout large geographical areas. We also assume that the Enterprise may use Cloud services as

well as have its own data center facilities. In this context, we consider that the Enterprise acquires

resources from a Network “Infrastructure Provider”.

It is worth highlighting that, in state-of-the-art Enterprise networks, the administrators need to deal

with multiple types of middleboxes such as CPEs, Firewalls, Wan Optimizers, DPIs, Load Balancers

(LBs) etc. This approach leads to rigid and heterogeneous ecosystems composed of standalone

appliances supplied by many different vendors. The typical consequences derived from this practice

are basically the following:

1) high CAPEX since corporate networks are based on middlebox cascades that usually demand

substantial resource replication at BOs and HQ (e.g., with 20 sites and 5 boxes per site on average, this

means 100 physical boxes that need to be maintained);

2) high OPEX, since maintaining the different boxes throughout the corporate network is cumbersome,

time consuming, and requires considerable skills;

3) slow innovation cycles (e.g., it is complex to add new appliances in corporate networks and/or

novel features to existing ones);

4) lock-in issues, i.e., hard to move from one vendor/solution to another without experiencing

operational pain;

5) considerable limitations for more advanced and ambitious approaches, since it is hard to adapt and

dynamically change the pre-configured processing sequences based on the context or specific

outcomes (e.g., shortcut some middleboxes and redirect to others right after deploying a new B2B

service).

In addition, almost all Enterprise networks deployed today are multi-connected, i.e., each site has at

least a primary and a backup link, and they are connected to their providers by means of different

forms of broadband access technologies, such as optical links, MPLS, VPLSs, Ethernet (VLAN, VxLAN,

etc.), xDSL/2, etc. At present, there is a clear tendency toward cheaper and less reliable connectivity

such as DSL, though, as a countermeasure, the Enterprises are increasing their outdegree and using

WAN optimizers in order to keep their availability at 99,999%.

Involved roles: Network Infrastructure Providers, Network Administrators, Enterprises with

increased networking needs.

Innovation

In this use case, our research will be particularly focused on the following innovative subjects.

Outsourced middleboxes in the form of “Appliance as a Service” (AaaS) or in other words “Provider

Provisioned Virtual Appliances” (PPVAs). These virtual appliances could be even packed and

seamlessly combine multiple solutions in a single virtual bundle that can be exposed to enterprise

customers. We plan to enable an open selection, combination, and utilization of virtual appliances,

including appliance consolidation. Also observe that traditional services such as DNS, SMTP, Web,

Intranets and the typical IaaS, PaaS and SaaS will also be offered as components through the ARCADIA

platform. In this framework, customization is the king, but simplicity is a key as well, so we plan to

work on models where providers could offer packs with predefined bundles along with a consolidated

management interface through the Enterprise Application Management GUI. The latter will offer a

repository, mainly composed of services and SDN-based Apps, which will basically control and manage

the corresponding VNF-FGs transparently to Enterprise Consumers.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

56 / 83

Customizable traffic optimization for the BOs and HQ by smartly exploiting the multi-connectivity in

place. We will give special attention to cheap L2 connectivity, including heterogeneous broadband

access technologies: xDSL2, optical/Ethernet, radio, etc., and the strengths of extending the VNFFGs so

as to reach the enterprise premises too. In other words, our research will be mainly focused on a

specific type of virtual appliances, namely, WAN optimizers. In the model that we conceive, the

optimization functions (i.e., the VNFs) will be split between the provider and the Enterprise premises,

and these functions will work in concert and in a customizable way according to the Enterprise

policies. These policies will cover aspects such as traffic distribution, reliability criteria, security

considerations, etc. It has to be highlighted that with ARCADIA the CPEs at corporate premises can be

saved or at least they can be completely virtualized.

Private Internets on the fly, i.e., interconnected corporate networks on demand. It has to be pointed

out that NFVbased networks are much easier to deploy and to adapt to logical connectivity

requirements. As long as a chain of programmable equipment can offer physical connectivity and e2e

transmission, enterprise networks can be dynamically connected to (and latterly disconnected from)

their own customers and/or corporate partners in sorts of private Internets on the fly, e.g., for product

demonstrations, for support tasks on specific products, for creating virtual room for meetings, etc. In

summary, our research will explore how Enterprises can privately connect to their customers and

partners on demand for specific events through an ARCADIA based application, according to a well-

defined set of service requirements.

All in all, this is a very rich use case, offering scenarios far more advanced than state-of-the-art

Enterprise settings. Our research and expected outcomes offer significant exploitable results, leading

to advantageous scenarios for all the stakeholders involved, that is, for enterprises, for providers, for

vendors fostering openness and programmability, and for external software developers.

Relationships to the ARCADIA framework

Based on the facts mentioned above, a Highly Distributed Application developed on the ARCADIA

platform, will set the basis and deliver the essential components that will be required in this use case.

With ARCADIA, Enterprise networks can be substantially simplified, so CAPEX and OPEX can be

dramatically reduced. And more importantly, since the advantages and footprint of SDN and NFV will

be extended and become readily available for corporate customers in the form of components that can

be chained using the ARCADIA platform, the innovation pace will be much faster.

Challenges

i) Facilitate network administrators in configuring a large set of devices ii) Reduce CAPEX and OPEX

iii) Develop, chain and deploy numerous SDN and NFV functions, using the Smart Controller, so as to

create powerful and customized solutions according to customer needs.

4.5 IoT/Smart Home

Title: IoT / Smart Home

Objectives: Exploit modern technology, based on ARCADIA platform, in order to facilitate the

everyday lives of the members of a family, while endorsing the efficient use of valuable resources (like

e.g. electricity, water, food etc) and enhancing the social interactions between them.

Description: The Arcadians are a family that knows how to take advantage of the modern technology

goods. Due to the recent financial crisis and because, in addition, they have a keen interest on

ecological issues and healthy living, they are using several applications that facilitate them in achieving

their personal and family targets in energy saving, healthy eating, food waste constraint etc. In parallel,

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

57 / 83

they have the chance to discuss all these issues and share moments and relative material (photos,

videos etc) through an extended home infotainment system. In their personal devices (smart phone,

tablet, smart watch etc) they are running a smart home Highly Distributed Application featuring three

main functions as presented in the following. i) Energy: this function, allows the user to specify a plan

for controlling electronic equipment in the house such as the TV, printers, routers etc. in order to save

energy. E.g. it is possible to turn them off completely, instead of staying at standby mode. It can also be

applied to electrical equipment, e.g. when leaving a room and nobody is there any more, the lights can

be turned off automatically. ii) Healthy living: the user selects a suitable diet and the application

provides the necessary guidelines for following this diet, based on input from the user on what food

has been consumed. Moreover, the application exploits information on shopping, cooking and eating in

order to maintain a view on food supplies, predict future needs and propose a shopping list. iii)

Infotainment: the third function is related to the entertainment of the user, as well as the provision of

information related to the other two functions. It includes features of a social networking application,

with enhanced security and content management, adjusted to the needs of a family or a close circle of

friends etc. And of course it provides access to a variety of multimedia material, from movies to family

videos and photos etc.

Involved roles: Energy suppliers: are interested in convincing their customers to behave more

responsibly, as well as to participate in marketing actions such as flexible electricity cost etc.

Consumers: are interested in saving money and helping the environment. Of course they are also

interested for their health and what their dear family and friends do. Application developers: are

looking for new attractive applications that can become indispensable for their users. Home electronics

equipment suppliers: they are searching for services that make their equipment to function in a

compensatory way, from both financial and user experience perspectives.

Innovation: Energy efficiency: there will be a clear focus of the system towards energy saving, rather

than just offering an automated control of the home “functions” (heat, air conditioning, lighting,

windows, etc). Humidity, temperature, human presence and various other sensors will enable the

creation of customized plans according to needs of the home residents. Healthy living and nutrition:

through the easy to use GUI the user will be able to register in a few steps every action related to food,

from meals and quantities, to what has been stored in a tupperware in the fridge. It will also provide

aid in shopping necessary food based on the desired diet and what has left in the kitchen self and

several other facilities. Infotainment: there is a home network and content server, able to manage and

stream content in a secure and trusted way. Family members can exchange views, experiences,

synchronize, communicate and feel together while away.

Relationships to the ARCADIA framework: The various service modules will be chained in order to

form an application with the help of the ARCADIA platform and the necessary Smart Controllers. The

provided application will be tailored to the needs of the specific family and it will be possible to launch

it in a wide range of devices, using again the ARCADIA software deployment paradigm. Moreover, the

service modules will be able to adapt to their execution environment, based on the incorporated

annotations according to the ARCADIA development paradigm. Finally, the smart home application

described in the previous will be surely a highly distributed application, since it will involve numerous

input sources and user equipment.

Challenges: i) To reduce energy consumption in the home ii) To reduce wasting of food iii) To help

the family as a whole and each person individually to eat more healthy iv) To stimulate family

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

58 / 83

members in taking the desired actions so as to achieve the aforementioned challenges v) To inform

and entertain family members and not only (core family, broader family, friends etc.)

5 Highly Distributed Applications and Programmable Infrastructure

Requirements

5.1 Distributed Software Development Paradigm Requirements

The ARCADIA software development paradigm is targeting at the specification and development of a

suitable development toolkit along with the appropriate level of abstractions that are going to

facilitate software developers to design and develop re-configurable highly distributed

applications.

The development paradigm has to provide simple and high-level abstractions for concurrency and

parallelism. Given that each application will be represented in the form of a service chaining graph

of software components with a set of relationships and dependencies among them, the inclusion of

the notion of concurrency and parallelism within each component (e.g. component specific functions

that can be executed in parallel) as well as among the components (e.g. software components in the

service chaining graph with no blocking behavior among each other) is required.

The developed software has to support high levels of responsiveness, resiliency, elasticity and

asynchronous mode of communication. A set of autonomic (self-* functionalities, e.g. self-healing)

and fault-tolerance characteristics have to be inherently supported within the software programming

paradigm. Components developed based on the support of the afore-mentioned aspects are

considered as reactive components (Figure 5-1), able to react and dynamically adapt to the

conditions on their operational environment.

With regards to the communication mode, message-driven communication models have to be

adopted. Actually, non-blocking behavior among the instantiated functions per component has to be

ensured through asynchronous and event-driven programming models. The development of message-

driven and highly responsive applications based on the interaction among the individual software

components ensures loose coupling, isolation and location transparency, making it possible for

applications to be deployed on demand and being able to handle failures without the need for

centralized orchestration.

With regards to resiliency, reactiveness in cases of failure has to be supported. Resilience can be

achieved through replication of the supported functionalities, isolation of the provided functionalities

per component and appropriate delegation of roles among components. Isolation of software

components is going to ensure that parts of the system can fail and recover without compromising the

overall application while high-availability can be ensured through replication in critical components.

“Let-it-crash” models have to be adopted towards this direction. Based on such models, when a

process crashes, it neatly exits and sends a message to the controlling process which can take action.

Actually, an assumption is made that some other process (linked process) in the system will observe

the death of the process and take appropriate corrective actions. The adoption of such models can

provide guarantees for the design and development of highly fault-tolerant systems that self-heal

and never stop providing the envisaged functionality.

With regards to responsiveness, given the message-driven communication models among the

software components, provision of rapid and consistent response times are required along with the

establishment of reliable upper bounds in order to be able to achieve a desired QoS level. Detection of

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

59 / 83

faults has to be identified shortly and the undertaking of corrective actions has to be triggered

immediately.

With regards to elasticity, the developed components have to be able to scale, in an horizontal and

vertical way. Responsiveness under various workloads has to be supported in parallel with optimal

use of the available resources.

Figure 5-1: Properties of Reactive Systems based on the Reactive Manifesto

ID SOFT.1

Title Provide simple and high-level abstractions for concurrency and parallelism

Role Software Developer

Description Adopt models (e.g. Akka Actor Model) that raise the abstraction level for concurrency and

parallelism and provide a better platform to build scalable, resilient and responsive

applications.

Constraints -

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.2

Title Be based on message-driven communication models

Role Software Developer

Description Software development based on processing of messages asynchronously using event-driven

models. Process events and generate responses (or more requests) in an event-driven

manner. Focus should be given on the application’s workflow—how the messages flow in the

system—instead of low level primitives like threads, locks and socket IO.

Constraints Adoption and appropriate extension of software development paradigm that is based on

message-driven communication models.

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.3

Title Support stateless or state-migration mechanisms

Role Software Developer

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

60 / 83

Description Non-blocking behaviors have to be supported within the software components given the

dynamic nature of their deployment and re-configuration as well as the adoption of let-it-

crash models. Stateless or state-migration mechanisms have to be supported for this purpose.

State-migration has to be based on specific components within the ARCADIA architecture.

Constraints Stateless or state-migration mechanisms developed have to take into account the

dependencies in the provided service chaining graph.

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.4

Title Support vertical and horizontal scalability matters

Role Software Developer, Smart Controller

Description Use of remoting technologies for interconnection software components in a peer-to-peer

fashion. Horizontal scaling can be realized through the dynamic instantiation and

interconnection of similar components. Vertical scaling is associated with usage of more

resources in the same node.

Constraints Adoption of message-driven communication models.

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.5

Title Location transparency support

Role Software Developer

Description Applications deployed in a distributed environment: all interactions of software components

have to use pure message passing and everything has to be asynchronous.

Constraints

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.6

Title Provision of non-blocking behavior and non-blocking guarantees

Role Software Developer

Description No programming thread is able to indefinitely delay others.

Constraints

Priority Top

Architectural

Part

Software Development Paradigm

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

61 / 83

ID SOFT.7

Title Support supervision strategies and formulation of hierarchies

Role Software Developer

Description Supervision describes a dependency relationship between software entities: the supervisor

delegates tasks to subordinates and therefore must respond to their failures. Supervision

schemes in the form of clustering, dynamic assignment of roles and fault

management/escalation schemes have to be supported. Clustering provides a fault-tolerant

decentralized peer-to-peer based cluster membership service with no single point of failure or

single point of bottleneck.

Constraints No centralized control.

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.8

Title Symmetric communication among the interconnected software components

Role Software Developer

Description Support of bidirectional communication between involved systems. There is no system that

only accepts connections, and there is no system that only initiates connections.

Constraints

Priority Top

Architectural

Part

Software Development Paradigm

ID SOFT.9

Title Representation of the application in the form of service chaining graph

Role Software Developer, DevOps user

Description Each application has to be developed in a way that it can be broken down into set of

components/services interconnected among them (based on the definition of dependencies

and workflow characteristics).

Constraints Such an activity has to be realized prior to the interpretation of an application from the Smart

Controller. In case of newly developed applications based on ARCADIA software development

paradigm, such functionality has to be supported in an automated way.

Priority Top

Architectural

Part

Software Development Paradigm

5.2 Programmable Infrastructure Management Requirements

Management of the programmable infrastructure in ARCADIA has to be realized by the Smart

Controller. Such management includes the capacity for registration of resources (in an Iaas and

multi-IaaS environment), allocation and de-allocation of resources in a dynamic and effective

manner as well as illustrating QoS policies in accessing resources. The objective is to hide all the

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

62 / 83

infrastructural configuration details from the application developer and facilitate him to develop

infrastructural agnostic applications.

Placement of applications has to be realized in the vast majority of cases over virtual resources, while

in some cases reservation of physical resources may be also required for the support of specific

functionalities (e.g. in case of need to access to the energy-aware capabilities of a device). Allocation of

further resources when required, release of non-used resources as well as migration/consolidation of

the provided applications services over the existing resources constitute basic characteristics that

have to be facilitated by the flexibility provided by the infrastructure.

A break down to requirements regarding the programmable infrastructure follows.

ID INFRA.1

Title Programmability of the infrastructure

Role IaaS provider

Description The computing, storage and networking infrastructure in ARCADIA should provide

management capabilities well beyond the mere configuration of static protocols and

paradigms. Programmability means a great flexibility in specifying what the infrastructure is

expected to do. There are two complementary aspects in programmability: for developers,

programmability is the mean to create the proper execution environment (provide

preferences for the infrastructure that the code runs on, including both the virtual hardware –

like servers, storage and network devices – and its configuration); for IaaS providers,

programmability means a high degree of flexibility in resource management, enabling the

implementation of complex and coordinated policies (like energy efficiency).

Constraints Devices implement programmability paradigms and supports related protocols (e.g.,

OpenFlow).

Priority Top

Architectural

Part

Software development paradigm, Smart Controller, Programmable Resource Manager

Notes The programmability of network infrastructures is an essential requirement for ARCADIA.

Indeed, the entire framework relies on the possibility to directly control the network, in order

to assure a dynamic, responsive and customized behavior, which satisfies the many needs

from applications.

ID INFRA.2

Title Resources abstraction

Role Smart Controller, IaaS provider

Description ARCADIA implements a Programmable Resource Abstraction layer to simplify the operation of

the Smart Controller. This abstraction layer should provide a consistent yet simplified view of

the underlying communication infrastructure by means of standard information and data

models, in order to set up the computational, storage and networking environment for every

distributed application in a scalable, dependable, secure and effective way. One of the main

concerns in this field is the level of granularity for the abstraction. On one hand, not all the

details and characteristics of the resources are necessary to the Smart Controller. On the other

hand, excessive abstraction prevents applications from utilizing resources to the maximum

because it hides the details of the resources.

Constraints

Priority Top

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

63 / 83

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.3

Title Horizontal scalability

Role Software developer, Smart Controller, IaaS provider

Description The ARCADIA infrastructure should support horizontal scalability of applications, both for

load balancing and redundancy, by providing specific functions to deliver packets to multiple

application instances. Applications should be able to increase the number of instances and to

specify whether they are meant for load balancing, for redundancy or both. Allocation of the

required resources has to be realized in a reactive way based on the requests for horizontally

scaling.

Constraints Network devices support load balancing and multicast delivery.

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.4

Title Heterogeneous networking

Role Smart Controller

Description The ARCADIA infrastructure should provide for seamless connectivity for application

instances running in different administrative domains, by creating virtual topologies spanning

heterogeneous infrastructures. Inter-domain connectivity must ensure consistent policies are

applied even in presence of heterogeneous infrastructures, especially for what concerns

Quality of Service and security (e.g., dynamic cross-network admission control).

Constraints

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.5

Title Virtualization of network elements

Role IaaS provider

Description Network elements are shared among multiple distributed applications. Each application

configures network elements according to its own requirements. Hence, it is necessary that

these networks and network elements are mutually isolated. This means that the

programmable infrastructure slices network resources into multiple logical partitions, and

implements suitable isolation mechanisms to avoid packets from jumping between them.

Partitioning the network infrastructure into multiple virtual networks concerns both physical

and software resources. In addition, applications may require network resources, e.g.,

bandwidth and packet processing, whereas the applications' requirements cannot be satisfied

with a single network element. In that case, multiple network elements can be virtually

combined to appear as a single resource able to satisfy the constraints.

Constraints Networking devices must be logically split into multiple independent partitions and clustered

together to appear as one single logical unit.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

64 / 83

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.6

Title Improved network programmability

Role IaaS provider

Description To better deal with specific needs from different applications, it would be desirable to extend

on demand the functions of the resource layer in a programmable manner. This ability can

dynamically add or remove additional functions for data transport and processing (such as

packet caching, header/payload compression, regular expression matching, data transcoding,

or even handling newly developed protocols), thereby avoiding addition or replacement of

specific hardware.

Constraints Programmability of the data plane.

Priority Low

Architectural

Part

Smart Controller, Programmable Resource Manager, Context Model.

Notes Data plane programmability affects devices in the infrastructure; however, both the Smart

Controller and the Context Model should be aware of this capability to enable developers to

take full advantage of it.

ID INFRA.7

Title User security and privacy

Role IaaS provider

Description The ARCADIA framework should guarantee trustworthy networking by traffic encryption and

anonymization. Encryption and anonymization are required in order to prevent sensitive data

from eavesdropping, alteration, and all other passive and active security threats.

Constraints Devices should have enough processing power to encrypt/decrypt large amount of data.

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.8

Title Secure networking

Role IaaS provider

Description The ARCADIA networking infrastructure should take any relevant countermeasure to

eliminate any security threat coming from weak architectural design, and erroneous or faulty

configuration. Access to network resources by applications must be granted in order to protect

the networking infrastructure and its components from a denial of service attack that may

jeopardize the overall robustness, quality and reliability of the entire infrastructure. The

affected resources may be easily and quickly isolated, malicious traffic may be safely

terminated, sensitive flows can be identified and separately transferred in a more secure

manner, In particular, ARCADIA should also take into account how networks are attached to

hypervisors. If a network must be separated from other systems at all costs, it may be

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

65 / 83

necessary to schedule instances for that network onto dedicated compute nodes. This may also

be done to mitigate against exploiting a hypervisor breakout allowing the attacker access to

networks from a compromised instance.

Constraints Access control, Intrusion Prevention and Detection Systems, Denial-of-Service mitigation.

Priority Medium

Architectural

Part

Smart Controller, Programmable Resource Manager

Notes This requirement addresses security constraints of the whole physical infrastructure owned

by a specific IaaS provider.

ID INFRA.9

Title Security middleboxes

Role IaaS provider, Software developer

Description The network implements security functions like NAT (Network Address Translation), Firewall,

NAC (Network Access Control), IBNS (Identity-Based Networking Services), mitigation of DoS

(Deny of Service), etc. Applications are provided with suitable abstractions to configure and

set up these services, which are run by the ARCADIA framework in each virtual network.

These functions are needed to protect distributed applications against malicious attacks and

unauthorized use.

Constraints Physical or virtual resources must have the capability to be split into multiple isolated logical

partitions.

Priority Medium

Architectural

Part

Smart Controller, Programmable Resource Manager, Context Model.

Notes This requirement addresses security providers for applications and services deployed by

users.

ID INFRA.10

Title Service chaining

Role IaaS provider, Smart Controller, Software developer

Description The ARCADIA infrastructure should enable applications dynamic service composition by

specifying a chain of intermediate processing functions that packets should traverse. The chain

may concern security features (e.g., the sequence of security middleboxes to be traversed by

incoming and outgoing packets), or application-specific processing (e.g., multiple transcoding

units to deliver the same video with different formats and codecs).

Constraints

Priority Low

Architectural

Part

Smart Controller, Programmable Resource Manager, Context Model.

ID INFRA.11

Title Consistency

Role IaaS provider

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

66 / 83

Description The network applies configuration changes to physical and virtual resources in a synchronous,

reliable and consistent way, in order to avoid undesirable effects like routing loops, packet

losses and delays, violation of security policies, packet hopping between different virtual

slices.

Constraints

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.12

Title Application mobility (scalability aspects)

Role IaaS provider

Description The ARCADIA framework is expected to dynamically adjust the execution environment to meet

the application requirements at best, in order to accomplish the QoS requirements, to assure

high-availability, to save energy. This entails the possibility of horizontally scaling the

application out and in, moving instances among different nodes and cloud infrastructures, and

suspending or delegating functions to save energy, depending on service status and end user

demands. The network supports this function by providing dynamic, quick and consistent

reconfiguration of the communication infrastructures, both in terms of packet forwarding and

logical functions.

Constraints The IaaS infrastructure must support seamless migration of virtual containers.

Priority Medium

Architectural

Part

Smart Controller, Programmable Resource Manager

Notes The critical factor in this context is service continuity, which means to provide the services

without service downtime regardless of whether the services are running in a single domain

or are moved to another domain. The usage of resource partitioning techniques (like VLANs, IP

subnets) often create a large context state in the system, which hinders service migration.

ID INFRA.13

Title Autonomic operation

Role IaaS provider

Description The usage of programmable infrastructures may aggravate the damage of security breaches,

misconfiguration, privacy infringement and other incidents due to human errors. Properties

that were traditionally implemented in hardware and impossible to change can now be

modified, misconfigured or can function improperly. It is therefore necessary to enhance

monitoring capability and automated operations.

Constraints All physical and virtual resources implement suitable configuration and management

protocols than enable machine-to-machine (M2M) interaction without human intervention.

Priority Medium

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.14

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

67 / 83

Title Power consumption modulation

Role IaaS provider

Description Energy efficiency is considered as one of the core objectives. To this goal, physical resources

should implement power management features that allow them to modulate their power

consumption (e.g., CPU voltage/frequency scaling), and to be partially or fully shut down

(including low-power states such as standby and hibernation).

Constraints

Priority Medium

Architectural

Part

Smart Controller, Programmable Resource Manager

ID INFRA.15

Title Efficient and effective availability

Role IaaS provider, Smart Controller

Description The ARCADIA framework should provide network service availability while balancing power

consumption as energy efficiency is considered as one of the core objectives. High-availability

of network services implies redundancy at both hardware and virtual level; in addition, proper

configuration is needed to quickly and seamlessly resume operation in case of

hardware/software failure. However, employing more resources than strictly needed entails

larger power consumption. Higher availability must consider the provisioning of redundant

resources at different geographical sites.

Constraints

Priority Medium

Architectural

Part

Management of resources, orchestration.

Notes Redundancy typically implies low resource utilization; for example, the Spanning Tree

protocol for Ethernet networks often leave many unutilized links. The shift towards

programmable infrastructure should provide better opportunities to balance resource

utilization with redundancy and availability (see also the “Programmability” requirement).

ID INFRA.16

Title QoS capabilities

Role IaaS provider

Description Applications execution environment hosts (Hypervisors, Containers or native OS) provide QoS

capabilities regarding access to compute (CPU, memory), storage (I/O) and network resources.

Network equipment provides QoS capabilities, including priority queues, traffic shaping,

access control, resource reservation.

Constraints

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

Notes QoS capabilities also entail the oversubscription ratio used in many datacenter, by using

narrower links at the root of tree topologies.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

68 / 83

ID INFRA.17

Title QoS management

Role IaaS provider, Software developer, Context Model

Description The ARCADIA framework should enable to implement QoS policies according to the

applications' requirements, in order to allow guaranteed service of workloads, near-real-time

routing and information driven network prioritization. This includes reserving compute and

storage resources, reserving bandwidth and memory buffers, labeling packets, setting priority

and scheduling disciplines, shaping traffic according the predefined Service Level Agreement,

managing Service Level Agreement among different administrative domains, service

preemption.

It is important that available service parameters are exchanged among different

administrative domains for automating the control and/or management of the network

services.

Constraints Programmable infrastructure components support QoS capabilities (see the “QoS capabilities”

requirement)

Priority

Architectural

Part

Management of resources, software development paradigm, application profiling.

Notes The availability of QoS capabilities in the IaaS infrastructure brings software developers the

possibility of requiring the proper service level for their applications, but this feature should

be available in the Context Model. Further, the specification of QoS capabilities enables to take

this information into the application profile, in order to reserve the right amount of spare

resources in the optimization process. On the resource management side, the placement of

applications in the physical resources pool must consider any topological constraints (e.g.,

oversubscription ratio in the communication tree).

ID INFRA.18

Title Network performance

Role IaaS provider

Description The network operates in a reliable and effective way, in order to assure the availability of the

communication infrastructure. Network control and management should not introduce any

penalties for applications. This means that, in addition to the proper number and size of

network devices, control protocols and logic must guarantee very short response time, must

support high-volumes of data, must not become the bottleneck of the system, and must

provide quick resilience to failure.

Constraints

Priority Medium

Architectural

Part

Management of resources.

Notes For example, for an SDN infrastructure, the proper number of controllers should be deployed,

and proactive control should be preferred over the reactive one.

ID INFRA.19

Title Unified abstraction of resources and capabilities

Role IaaS provider

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

69 / 83

Description It is important that a common resource abstraction model be applied to similar network

resources regardless of the underlying technology. Effective and energy efficient management

of network devices require the appropriate abstraction of various capabilities, in terms of

functional states and operating conditions. These should include at list the different power

states available (including power modulation and low-power states), the power consumption

and the QoS constraints for each state (delay, throughput, jitter, packet loss). In addition, a

standard interface is used to gather data from all network equipment.

Constraints Programmable resources support power consumption modulation features (see the “Power

consumption modulation” requirement).

Priority Top

Architectural

Part

Management of resources.

Notes The usage of the Green Abstraction Layer will be considered for (at least) networking devices.

5.3 Distributed Applications Deployment and Orchestration Requirements

As stated in Section 2.3, in ARCADIA we are going to support applications developed based on the

ARCADIA software development paradigm, as well as existing (legacy) and hybrid applications.

Deployment of such applications has to be based on the creation (in an automated or manual manner)

of a deployment script that is going to be handled by the Smart Controller for the application’s

deployment phase.

The deployment script has to take into account the denoted service-chaining scheme of the

applications components as well as the imposed constraints. The deployment script has to be

provided based on a widely used scripting language that can be interpreted later on by the Smart

Controller. The script has to include a set of hooks, used in order to support actions –such as install

software, start/stop a service, manage relationships among components-, as well as real-time

monitoring hooks and hooks related with concepts denoted in the ARCADIA context model.

Upon the creation of the deployment script, the Smart Controller is responsible for instantiating the

appropriate components, placing them over the available infrastructure and validating the

appropriate deployment of the application. In order to provide such functionalities, registration of

the programmable resources has to be supported, as well as a set of real time monitoring and

policies management functionalities.

Placement has to take into account the software level annotations denoted by the applications

developers, the active policies defined by the Services Providers as well as the available resources in

the considered multi-PoPs infrastructure.

Instantiation of the application components has to be done on a distributed way based on the

principles of the considered software development paradigm. Given that each application is broken

down in a set of components and their dependencies, instantiation of components has to be realized in

an ad-hoc manner. Towards this direction, the existence of a components repository based on the

active services in the considered infrastructure can be proven helpful. De-provision of the reserved

resources upon the end of the execution time of each application has also to be supported.

With regards to the orchestration of the provided applications in real-time, this is going to be based

on on-the-fly configuration taking into account real-time monitoring probes as well as the existing

policies. A set of real-time monitoring probes has to be initiated per application component, based

on the monitoring hooks provided within the corresponding software. Real-time as well as archived

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

70 / 83

information can be used for decision making purposes for optimal execution/re-configuration of

an application. Prioritization of the existing policies as well as conflict resolution mechanisms has also

to be supported.

In the following the aforementioned requirements are further analyzed while next, applications profiling

and optimization requirements are addressed in separate as important parts of the applications

deployment and orchestration.

ID DEP.ORCH.1

Title Creation of the deployment script

Role Software Developer, DevOps user

Description Based on the breakdown of each application into a set of components/services which are

interconnected among them (based on the definition of dependencies and workflow

characteristics) as well as the denoted constraints and monitoring hooks, an application’s

deployment script has to be created and feed the ARCADIA Smart Controller for deployment

purposes.

Constraints In ARCADIA based applications, this functionality has to be automated. In existing applications

or hybrid application, the deployment script has to be prepared by a DevOps user. A scripting

language has to be adopted for the description of the deployment scripts.

Priority Top

Architectural

Part

Software Development Paradigm, Smart Controller

ID DEP.ORCH.2

Title Registration of programmable resources

Role Smart Controller, IaaS Provider

Description The available compute, storage and network resources per Point of Presence (e.g. data center)

have to be registered to the Smart Controller which advertises them and makes them

accessible through a resource management API.

Constraints Use/extension of open-source resource management software is highly desired (e.g.

OpenStack).

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID DEP.ORCH.3

Title Registration and management of programmable resources in a Multi-IaaS environment

Role Smart Controller, IaaS Provider

Description Registration and management of resources through multiple PoPs has to be supported.

Communication and interaction between various smart controllers each one being

responsible for a single PoP, has to be supported while resources advertisement and

synchronization issues among them to be addressed.

Application’s deployment to a multi-IaaS environment has to be realized.

Constraints Establishment of network connectivity among the multiple IaaS infrastructure. Unified

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

71 / 83

management functionalities per set of resources across the multiple IaaS infrastructure.

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID DEP.ORCH.4

Title Application’s deployment based on the deployment script

Role Smart Controller, DevOps User

Description Given the existence of the application’s deployment script, the Smart Controller is responsible

for the placement of the application over the available infrastructure and the instantiation of

the application’s components.

Constraints Capacity for interpretation of the deployment script. Specification of a notation that can be

handled by the Smart Controller. Compatibility with existing deployment scripts.

Priority Top

Architectural

Part

Smart Controller

ID DEP.ORCH.5

Title Monitoring and validation of application’s deployment process

Role Smart Controller

Description Need for monitoring of the deployment process and the validation of the proper instantiation

of the required components, as denoted in the deployment script.

Constraints Need for monitoring probes to the Smart Controller with regards to the status of each

component. Need for existence of a component repository.

Priority Top

Architectural

Part

Smart Controller

ID DEP.ORCH.6

Title Resources reservation and configuration

Role Smart Controller

Description Need for reservation of the appropriate resources in the available programmable

infrastructure for the deployment of the considered application. Deployment of the

applications components in a virtualized (virtual machine, container) or physical

environment.

Constraints Use of resource management software and the corresponding API.

Priority Top

Architectural

Part

Smart Controller, Programmable Resource Manager

ID DEP.ORCH.7

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

72 / 83

Title Monitoring hooks deployment and validation

Role Smart Controller

Description Based on the monitoring hooks denoted in the deployment script, a set of monitoring probes

have to be established and maintained during the application’s execution time. Such

monitoring probes will be used for collection of information with regards to the status of each

component, QoS metrics etc. and real-time decision making from the Smart Controller with

regards to optimal deployment/configuration/re-configuration aspects.

Constraints Access to monitoring mechanisms and data provided by the software.

Priority Top

Architectural

Part

Smart Controller

ID DEP.ORCH.8

Title Service locator/Component repository

Role Smart Controller, ARCADIA Administrator

Description A repository with the instantiated services/components have to be accessible to the Smart

Controller for instantiation of similar services/components in a dynamic manner –upon the

receipt of a deployment script. This repository has to support automated registration of

components while it has also to be periodically maintained by the ARCADIA Administrator.

Constraints Need for definition of the ARCADIA administrative domain where such a repository will be

active (e.g. services provided over the resources registered to the Programmable Resources

Manager of the Smart Controller)

Priority Top

Architectural

Part

Smart Controller

ID DEP.ORCH.9

Title Context model repository

Role Smart Controller, Application Developer, Services Provider, Iaas Provider, Arcadia

Administrator

Description A context model repository has to be available, facilitating the extension/update of the

concepts represented in the ARCADIA context model. Such concepts can be used by all the

ARCADIA users depending on their preferences and perspective (e.g. for the description of

policies on behalf of the Services Provider).

Constraints Maintenance of the context model in a periodical time period.

Priority Medium

Architectural

Part

Smart Controller, Context Model

ID DEP.ORCH.10

Title Service graph repository

Role Smart Controller, DevOps User

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

73 / 83

Description A service graph repository with existing service graphs instantiated and deployed in the

ARCADIA operational environment has to be available.

Constraints Access and privacy issues have to be examined.

Priority Medium

Architectural

Part

Smart Controller

ID DEP.ORCH.11

Title Rapid introduction of new services

Role Software Developer, DevOps User

Description New services has to be easily designed and deployed over the available infrastructure by

exploiting specific architectural components, such as the service locator/component

repository as well as the service graph repository.

Constraints Integration of existing components/graphs in new deployment scripts.

Priority Medium

Architectural

Part

Smart Controller

ID DEP.ORCH.12

Title Applications operation QoS guarantees

Role Smart Controller

Description Establish a set of monitoring probes based on the existing monitoring hooks and metrics.

Provide guarantees on the services provision based on the existing policies in the ARCADIA

operational environment.

Constraints Need for conflict resolution policies. Consider Let-it fail programming model.

Priority Medium

Architectural

Part

Smart Controller

ID DEP.ORCH.13

Title Autonomic management of applications

Role Smart Controller

Description Re-configure applications based on conditions and objectives/constraints (e.g. support

vertical and horizontal auto-scaling characteristics). A set of distributed intelligence

mechanisms have to be designed and developed in order to support such functionalities.

Constraints

Priority Medium

Architectural

Part

Smart Controller

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

74 / 83

ID DEP.ORCH.14

Title De-provisioning of reserved resources

Role Smart Controller

Description Upon the end of the running time of the application, the allocated resources have to be

released.

Constraints Existence of API for resource management.

Priority Medium

Architectural

Part

Smart Controller, Programmable Resources Manager

5.3.1 Distributed Applications Profiling and Optimization Requirements

One of the main functionalities of the ARCADIA Smart Controller regards the design and deployment of

an optimization framework that has to support the optimal placement and execution of

applications and services over the available infrastructure. The optimization framework has to be able

to handle multiple objectives denoted by different users and provide configuration suggestions

taking into account the existing policies in the ARCADIA operational environment along with their

hierarchy. Optimization aspects regard objectives of the services provider, such as the need for low

energy consumption, the need for the provision of QoS guarantees and meeting provided Service Level

Agreements (SLAs), cost related or infrastructure-usage related objectives, as well as objectives of

the application, such as performance related or resources usage and cost related objectives. These

objectives have to be described by using a specific notation and feed the Smart Controller in order to

be able to proceed to decision making based on them.

The achievement of the objectives has to be clearly stated through the use of a set of metrics.

Monitoring of the current status of a set of service level objectives has to be realized based on the

monitoring and management mechanisms of the Smart Controller and the monitoring hooks and

preferences (in the form of annotations) provided by the software developer as well as the DevOps

user. The denoted constraints in various levels have also to be taken into account and be part of the

optimal solving problem.

Optimization has to be pursued during the entire applications’ management lifecycle, starting from

their initial deployment over the programmable infrastructure until the finalization of their execution

and the de-provision of the allocated resources. Thus, the optimization framework has to be able to

provide suggestions in short time (taking into account time-constraints of each application) and

support effective communication paths with the monitoring and policies management components of

the ARCADIA Smart Controller. Given that optimization objectives usually refer to bundle of services,

the Smart Controller has to be able to interplay with the provision of the individual applications

focusing on the fulfillment of the overall objectives.

In addition to real-time solving of optimization problems, the capacity to be able to support

forecasting regarding the status of the ARCADIA operational environment in the future based on the

provided applications/services at each point of time is also considered very helpful. This can be

achieved through application profiling in terms of the application needs with regards to the usage of

resources, horizontal and vertical scaling characteristics as well as sensitivity to specific metrics (e.g.

low jitter in case of real-time video streaming functionalities). For instance, information regarding the

computational, storage and network traffic creation intensity of an application can provide valuable

information to the deployment component of the Smart Controller. Based on the status of the available

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

75 / 83

resources, the Smart Controller has to decide whether a new deployment can be supported without

violating any of the existing constraints. Prediction for the necessity to use specific resources in the

upcoming time periods may be also realized leading to optimal allocation of resources and new

requests admission control. Identification of misbehavior of specific applications may be also

identified based on their profiling. The Smart Controller has to be also able to react pro-actively in

order to adapt to infrastructure and application state changes and select always the optimal

configuration. For instance, consolidation of envisaged workloads may be realized causing little or no

impact to application performance.

Below, the aforementioned requirements are further analyzed.

ID PROF.OPT.1

Title Optimal placement of applications

Role Smart Controller, Services Provider, Software Developer

Description The placement of applications over the available programmable infrastructure has to be

realized in an optimal manner with regards to the objectives denoted by the Services Provider

and the Software Developer. High level objectives have to be represented in a set of lower

level objectives that can be realized through appropriate handling of the operational status of

the application’s components.

Constraints Objectives, preferences and constraints denoted at software level by the software developer.

Policies imposed by the Services Provider.

Priority Top

Architectural

Part

Smart Controller, Optimization Framework

ID PROF.OPT.2

Title Description of high level policies in a custom format

Role Services Provider

Description The Services Provider should be able to describe high level policies based on its objectives

(e.g. cost reduction policies, high quality of services policies, energy efficiency policies etc.). A

custom format has to be used for the description of such policies. Furthermore, a mapping

mechanism of high level policies to orchestration of the operational status of the underlying

software components has to be available.

Constraints Capacity to map high level policies to lower level configuration.

Priority Top

Architectural

Part

Smart Controller

ID PROF.OPT.3

Title Multi-objectives handling - Conflict Resolution

Role Services Provider, Software Developer, Smart Controller

Description Given that in many cases, multi-criteria optimization may be required, there is a need for

defining priorities over the denoted service level objectives as well as specific conflict

resolution policies. The optimal solution with regards to the multi-criteria objectives has to be

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

76 / 83

implemented taking into account the definition of specific utility functions per objective.

Constraints Support of distributed conflict resolution policies. Definition of hierarchy schemes for the

management of conflicts.

Priority Top

Architectural

Part

Smart Controller

ID PROF.OPT.4

Title Applications execution real-time adaptation

Role Smart Controller, Services Provider, Software Developer

Description Upon the initial placement of the applications, real-time adaptation and re-configuration of

the execution part has to be supported, based on the current status of the ARCADIA

operational environments. Re-configuration can be triggered towards the fulfillment of the

optimization objectives and may regard horizontal or vertical scaling aspects, adaptation of

the quality of the provided services (e.g. lower quality ratio in a video on demand service) etc.

Constraints Constraints and preferences denoted by the software developer.

Priority Top

Architectural

Part

Smart Controller

ID PROF.OPT.5

Title Event Triggers based on real-time monitoring probes

Role Smart Controller, Software Developer, DevOps User

Description Based on the monitoring hooks denoted in the applications software components as well as

the existing policies, a set of monitoring probes have to be established. Real time monitoring

information has to be collected and processed. Based on the available information, a set of re-

configuration actions may be triggered.

Constraints Capacity to establish real-time monitoring probes among distributed components.

Priority Top

Architectural

Part

Smart Controller

ID PROF.OPT.6

Title Applications profiling support

Role Software Developer, Smart Controller

Description It is desirable that the developed application components are accompanied with profiling

information in terms of needs for computing, memory, storage and networking resources as

well as with peculiarities such as data locality, data volatility, time criticality etc. Such profiling

can be available prior to the placement of an application through annotations or through

processing of historical data collected from previous executions of the specific components.

The overall profiling can then be used for optimal placement as well as for forecasting

purposes.

Constraints Awareness with regards to the behavior of the application.

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

77 / 83

Priority Medium

Architectural

Part

Smart Controller

ID PROF.OPT.7

Title Decision making based on applications profiling information and forecasting mechanisms

Role Smart Controller

Description Given the existence of profiling information per application, admission control for the

deployment of new applications can be realized taking into account the existing conditions in

the ARCADIA operational environment and the predicted impact of the deployment of a new

application. Furthermore, forecasting regarding performance oriented issues in the ARCADIA

operational environment as well as regarding applications future demands can be realized.

Constraints

Priority Medium

Architectural

Part

Smart Controller

ID PROF.OPT.8

Title Support of distributed intelligence mechanisms

Role Smart Controller

Description Distributed intelligence mechanisms have to be supported by the Smart Controller in some

cases for being able to react in real-time in changes in the ARCADIA operational environment.

Decision making with regards to optimization issues may be realized in a local or network

wide perspective, taking into account the peculiarities of each software component.

Constraints Time constraints in decision making process.

Priority Medium

Architectural

Part

Smart Controller

ID PROF.OPT.9

Title Real-time migration/consolidation mechanisms

Role Smart Controller

Description Based on the deployed applications at each point of time and the current workload and

resource usage conditions, a set of migration/consolidation mechanisms has to be supported

for optimal use of the available resources without negative impact on the overall performance.

Constraints

Priority Medium

Architectural

Part

Smart Controller

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

78 / 83

6 Conclusions

The requirements specification plays an important role for the project, since it will provide the input

to define the ARCADIA Context Model and framework. The requirements definition phase has involved

contribution by all partners, and has followed a logical process including the identification of the main

roles, the definition of the ARCADIA vision and context, and the analysis of the current state of the art.

Current best practice recommends a close cooperation between software developers and operations

staff (DevOps philosophy); however, the use cases have clearly pointed out that more automation is

necessary and new programming paradigms have to be adopted in order to make the deployment

process repeatable, resilient, error-prone and adaptable to the actual execution environment. The

analysis of the state of the art has revealed that programmable infrastructure is already available both

for computing and networking; however, the deployment process still relies on scripts and other

artifacts that require strong human intervention.

According to the ARCADIA objectives and use cases, a rich set of requirements has been derived, which

cover for system, functional and compliance aspects. The use cases have already been shared with

Task 2.3, in order to extend the current set with more specific requirements on the Smart Controller.

The requirements are now available to Task 2.2 and Task 2.4 to carry out the definition of the

ARCADIA Context Model and framework.

In order to facilitate the identification and selection of requirements for each group of activities, we

have already clustered them into five categories: i) distributed software development paradigm

(requirements concerning the definition of the Context Model and its usage by software developers

during implementation); ii) programmable infrastructure management (requirements about features

to be available in the virtualized infrastructure); iii) distributed application profiling (requirements

concerning the identification of applications’ special and temporal characteristics, to be used for

dynamic deployment and orchestration); iv) deployment and orchestration (requirements concerning

the placement of software components among programmable infrastructure available in multiple

domains); v) optimization (requirements concerning the optimal allocation of resources to meet

policies by infrastructure providers and constraints/profiles by applications).

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

79 / 83

Annex I: References

[1] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio. An Updated Performance
Comparison of Virtual Machines and Linux Containers. IBM Research Report, RC25482
(AUS1407-001) July 21, 2014.

[2] Difference between Hypervisor Virtualization and Container Virtualization. URL:
http://www.slashroot.in/difference-between-hypervisor-virtualization-and-container-
virtualization , 21 Oct 2014.

[3] Red Hat Enterprise Linux 6, Resource Management Guide, Managing system resources on
Red Hat Enterprise Linux 6, Edition 6. URL: https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

[4] Resource management in Docker, URL:

 https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/

[5] Operating System Containers vs. Application Containers, URL:

http://blog.risingstack.com/operating-system-containers-vs-application-containers/

[6] Kernel Virtual Machine, URL: http://www.linux-kvm.org/

[7] The XEN project, URL: http://www.xenproject.org/

[8] VMware Vsphere, URL: http://www.vmware.com/products/esxi-and-esx/overview

[9] Microsoft HyperV, URL: http://www.microsoft.com/en-us/server-
cloud/solutions/virtualization.aspx

[10] Virtualization Matrix - Virtualization comparison, URL:

http://www.virtualizationmatrix.com/matrix.php?category_search=all&free_based=1

[11] Rami Rosen. Linux Containers and the Future Cloud, URL:

http://media.wix.com/ugd/295986_d5059f95a78e451db5de3d54f711e45d.pdf

[12] LXC Containers, URL: http://linuxcontainers.org/

[13] Docker, URL: https://www.docker.io/

[14] Namespaces, URL: http://man7.org/linux/man-pages/man7/namespaces.7.html

[15] Cgroups, URL: https://en.wikipedia.org/wiki/Cgroups

[16] Tobby Banerjee. Understanding the key differences between LXC and Docker, URL:

https://www.flockport.com/lxc-vs-docker/

[17] Microsoft Unveils New Container Technologies for the Next Generation Cloud, URL:
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-
for-the-next-generation-cloud/

[18] Canonical MaaS, URL: https://maas.ubuntu.com/

[19] Openstack Ironic, URL: http://docs.openstack.org/developer/ironic/deploy/user-guide.html

[20] Nick Feamster, Jennifer Rexford, Ellen Zegura. The Road to SDN: An Intellectual History of

Programmable Networks. ACM SIGCOMM Computer Communication Review, Volume 44 Issue 2,

Pages 87-98, April 2014.

[21] Cisco Logical Routers, URL:

http://www.slashroot.in/difference-between-hypervisor-virtualization-and-container-virtualization
http://www.slashroot.in/difference-between-hypervisor-virtualization-and-container-virtualization
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/
http://blog.risingstack.com/operating-system-containers-vs-application-containers/
http://www.linux-kvm.org/
http://www.xenproject.org/
http://www.vmware.com/products/esxi-and-esx/overview
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.virtualizationmatrix.com/matrix.php?category_search=all&free_based=1
http://media.wix.com/ugd/295986_d5059f95a78e451db5de3d54f711e45d.pdf
http://linuxcontainers.org/
https://www.docker.io/
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Cgroups
https://www.flockport.com/lxc-vs-docker/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
https://maas.ubuntu.com/
http://docs.openstack.org/developer/ironic/deploy/user-guide.html

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

80 / 83

http://www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/interfaces/command/reference/hr32lr.

html

[22] Juniper Logical Routers, URL:

http://www.juniper.net/techpubs/software/junos/junos85/feature-guide-85/id-11139212.html

[23] Open Networking Foundation, URL: https://www.opennetworking.org

[24] Eric Keller, Soudeh Ghorbani, Matt Caesar, Jennifer Rexford. Live Migration of an Entire

Network (and its Hosts). 11th ACM Workshop on Hot Topics in Networks (HotNets-XI), 2012.

[25] Soudeh Ghorbani, Cole Schlesinger, Matthew Monaco, Eric Keller, Matthew Caesar, Jennifer

Rexford, and David Walker. Transparent, Live Migration of a Software-Defined Network. ACM

Symposium on Cloud Computing (SOCC '14), 2014.

[26] ETSI. Network Function Virtualization, URL:

http://www.etsi.org/technologies-clusters/technologies/nfv

[27] Prayson Pate. NFV and SDN: What’s the Difference?, URL:

https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the difference/2013/03/

[28] Packet Processing on Intel® Architecture, URL:

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-

processing-is-enhanced-with-software-from-intel-dpdk.html

[29] Network Functions Virtualisation — fit for purpose?, URL:

http://www.microwave-eetimes.com/en/network-functions-virtualisation-fit-for-purpose-

63.html?cmp_id=71&news_id=222904860&page=2

[30] Juniper vMX, URL: http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/

[31] Openvswitch, URL: http://openvswitch.org/

[32] POX, URL: http://www.noxrepo.org/pox/about-pox/

[33] IRIS, URL: http://openiris.etri.re.kr/

[34] Floodlight, URL: http://www.projectfloodlight.org/floodlight/

[35] Openstack, URL: http://www.openstack.org/

[36] Openstack components, URL: https://en.wikipedia.org/wiki/OpenStack

[37] Apache Cloudstack, URL: https://cloudstack.apache.org/about.html

[38] Opendaylight, URL: http://www.opendaylight.org

[39] OpenContrail, URL: http://www.opencontrail.org

[40] Open Networking Foundation, URL: https://www.opennetworking.org

[41] Open Platform for NFV (OPNFV), URL: https://www.opnfv.org/

[42] Cloudify, URL: http://getcloudify.org

[43] TOSCA, URL: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

[44] Pantou: Openflow 1.0 for openwrt, URL: http://www.openflow.org/wk/index.php

[45] ofsoftswitch13 – cpqd, URL: https://github.com/CPqD/ofsoftswitch13

[46] Indigo: Open source openflow switches, URL: http://www.openflowhub.org/display/Indigo/

[47] OpenFaucet, URL: http://rlenglet.github.io/openfaucet/index.html/

[48] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker. Nox: towards an

operating system for networks. ACM SIGCOMM Computer Communication Review, 38(3):105–

110, 2008.

[49] Mul, URL: http://sourceforge.net/p/mul/wiki/Home/

[50] Z. Cai, AL Cox, and TSE Ng. Maestro: A system for scalable OpenFlow control. Technical Report

TR10-08, Rice University, December 2010.

[51] Trema openflow controller framework, URL: https://github.com/trema/trema

[52] Beacon, URL: https://openflow.stanford.edu/display/Beacon/Home

http://www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/interfaces/command/reference/hr32lr.html
http://www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/interfaces/command/reference/hr32lr.html
http://www.juniper.net/techpubs/software/junos/junos85/feature-guide-85/id-11139212.html
https://www.opennetworking.org/
http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the%20difference/2013/03/
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.microwave-eetimes.com/en/network-functions-virtualisation-fit-for-purpose-63.html?cmp_id=71&news_id=222904860&page=2
http://www.microwave-eetimes.com/en/network-functions-virtualisation-fit-for-purpose-63.html?cmp_id=71&news_id=222904860&page=2
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://openvswitch.org/
http://www.noxrepo.org/pox/about-pox/
http://openiris.etri.re.kr/
http://www.projectfloodlight.org/floodlight/
http://www.openstack.org/
https://en.wikipedia.org/wiki/OpenStack
https://cloudstack.apache.org/about.html
http://www.opendaylight.org/
http://www.opencontrail.org/
https://www.opennetworking.org/
https://www.opnfv.org/
http://getcloudify.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://github.com/CPqD/ofsoftswitch13
http://www.openflowhub.org/display/Indigo/
http://rlenglet.github.io/openfaucet/index.html/
http://sourceforge.net/p/mul/wiki/Home/
https://github.com/trema/trema
https://openflow.stanford.edu/display/Beacon/Home

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

81 / 83

[53] Jaxon:java-based openflow controller, URL: http://jaxon.onuos.org/

[54] Helios by NEC, URL: http://www.nec.com/

[55] Simple Network Access Control (SNAC), URL: http://www.openflow.org/wp/snac/

[56] Ryu, URL: http://osrg.github.com/ryu/

[57] OESS, URL: https://code.google.com/p/nddi/

[58] The nodeflow openflow controller, URL: http://garyberger.net/?p=537

[59] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.Y. Huang, P. Kazemian, M.

Kobayashi, J. Naous, et al. Carving research slices out of your production networks with

openflow. ACM SIGCOMM Computer Communication Review, 40(1):129–130, 2010.

[60] Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador, Carlos N. A. Correa, Sidney C.

de Lucena, and Maurício F. Magalhães. Virtual routers as a service: the routeflow approach

leveraging software-defined networks. In Proceedings of the 6th International Conference on

Future Internet Technologies, CFI ’11, pages 34–37, New York, NY, USA, 2011, ACM.

[61] OpenNebula, URL: http://opennebula.org/

[62] Conduct R, URL: http://www.typesafe.com/products/conductr

[63] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. Profiling and

Modeling Resource Usage of Virtualized Applications. Middleware 2008, 9th ACM / IFIP /

USENIX International Conference on Middleware (2008).

[64] Jinho Hwang, Sai Zeng, Frederick y Wu, Timothy Wood. A Component-Based Performance

Comparison of Four Hypervisors. IEEE IM 2013.

[65] J.F. Perez, G. Casale, S. Pacheco-Sanchez. Estimating Computational Requirements in Multi-

Threaded Applications. IEEE Transactions on Software Engineering, December 2014, Volume 41,

Issue 3, pp. 264-278.

[66] Tania Lorido-Botran, Jose Miguel-Alonso, Jose A. Lozano. A Review of Auto-scaling Techniques

for Elastic Applications in Cloud Environments. Journal of Grid Computing, December 2014,

Volume 12, Issue 4, pp. 559-592.

[67] Rafael Weingärtner, Gabriel Beims Bräscher , Carlos Becker Westphall. Cloud resource

management: A survey on forecasting and profiling models. Journal of Network and Computer

Applications, Volume 47, January 2015, pp. 99–106.

[68] R Han, Moustafa Ghanem, and Yike Guo. Elastic-TOSCA: Supporting Elasticity of Cloud

Application in TOSCA. CLOUD COMPUTING 2013, The Fourth International Conference on Cloud

Computing (2013).

[69] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, Robert Hundt. Google-Wide Profiling:

A Continuous Profiling Infrastructure for Data Centers. IEEE Micro (2010), pp. 65-79.

[70] Kuai Xu, Feng Wang, Lin Gu. Profiling-as-a-Service in Multi-Tenant Cloud Computing

Environments. The International Workshop on Security and Privacy in Cloud Computing, Macau,

China, June 18-21 2012.

[71] Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, Albert Y. Zomaya, and Bing Bing Zhou.

Profiling Applications for Virtual Machine Placement in Clouds. 2011 IEEE 4th International

Conference on Cloud Computing.

[72] Nilabja Roy, Abhishek Dubey and Aniruddha Gokhale. Efficient Autoscaling in the Cloud using

Predictive Models for Workload Forecasting. 2011 IEEE 4th International Conference on Cloud

Computing.

[73] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, Xavier Hesselbach.

Virtual Network Embedding: A Survey. Communications Surveys & Tutorials, IEEE (Volume: 15,

Issue: 4), Feb. 2013.

http://jaxon.onuos.org/
http://www.nec.com/
http://www.openflow.org/wp/snac/
http://osrg.github.com/ryu/
https://code.google.com/p/nddi/
http://garyberger.net/?p=537
http://opennebula.org/
http://www.typesafe.com/products/conductr

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

82 / 83

[74] N. M. Mosharaf Kabir Chowdhury, Raouf Boutaba. Network Virtualization: State of the Art and

Research Challenges. IEEE Communications Magazine, Jul. 2009.

[75] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, Raouf Boutaba. Virtual Network

Embedding with Coordinated Node and Link Mapping. In Proceedings of the 28th Conference

on Computer Communications (IEEE INFOCOM), Rio de Janeiro, Brazil, Apr. 2009.

[76] Albrecht, J., Oppenheimer, D., Vahdat, A., and Patterson. Design and implementation trade-offs

for wide-area resource discovery. ACM Transactions on Internet Technology Vol. 8, No. 4 (Sep.

2008), pp 1-44.

[77] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to virtual

network components. In Proceedings of IEEE INFOCOM, 2006.

[78] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embedding: Substrate

support for path splitting and migration. ACM SIGCOMM Computer Communication Review, vol.

38, no. 2, pp. 17– 29, April 2008.

[79] D. Andersen. Theoretical approaches to node assignment. Unpublished Manuscript,

http://www.cs.cmu.edu/∼dga/papers/andersen-assign.ps, 2002.

[80] A. Gupta, J. M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual private

network: A network design problem for multicommodity flow. In Proceedings of ACM STOC,

2001, pp. 389–398.

[81] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping problem. ACM

SIGCOMM Computer Communication Review, vol. 33, no. 2, pp. 65–81, April 2003.

[82] Mohamed Faten Zhani, Qi Zhang, Gwendal Simon and Raouf Boutaba. VDC Planner: Dynamic

Migration-Aware Virtual Data Center Embedding for Clouds. IFIP/IEEE International

Symposium on Integrated Network Management (IM 2013), May 2013.

[83] Qi Zhang, Mohamed Faten Zhani, Maissa Jabri, Raouf Boutaba. Venice: Reliable Virtual Data

Center Embedding in Clouds. IEEE INFOCOM 2014.

[84] Ahmed Amokrane, Mohamed Faten Zhani, Rami Langar, Raouf Boutaba and Guy Pujolle.

Greenhead: Virtual Data Center Embedding Across Distributed Infrastructures. IEEE

Transactions on Cloud Computing, Vol.1, Issue 1, Sep. 2013.

[85] Li Erran Li, Vahid Liaghat, Hongze Zhao, MohammadTaghi Hajiaghayi, Dan Li, Gordon Wilfong, Y.

Richard Yang and Chuanxiong Guo. PACE: Policy-Aware Application Cloud Embedding. IEEE

INFOCOM 2013.

[86] Toward a Strategic Agenda for Software Technologies in Europe, Information Society

Technologies Advisory Group (ISTAG), July 2012, Available Online:

http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf

[87] Guido Salvaneschi, Alessandro Margara, Giordano Tamburrelli. Reactive Programming: a

Walkthrough. ICSE 2015.

[88] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,A. Bromfield, and S.

Krishnamurthi. Flapjax: a programming language for Ajax applications. ser. OOPSLA ’09. New

York, NY, USA: ACM, 2009, pp. 1–20.

[89] C. Elliott and P. Hudak. Functional reactive animation. ser. ICFP ’97. New York, NY, USA: ACM,

1997, pp. 263–273.

[90] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value language.

ser. ESOP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 294–308.

[91] G. Salvaneschi, G. Hintz, and M. Mezini. Rescala: Bridging between object-oriented and

functional style in reactive applications. ser. MODULARITY ’14. New York, NY, USA: ACM, 2014,

pp. 25–36.

http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf

D2.1 - Description of Highly Distributed Applications and Programmable Infrastructure

Requirements

83 / 83

[92] I. Maier and M. Odersky. Higher-order reactive programming with incremental lists. ser.

ECOOP’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 707–731.

[93] J. Liberty and P. Betts. Programming Reactive Extensions and LINQ. 1st ed. Berkely, CA, USA:

Apress, 2011.

[94] E. Bainomugisha, A. L. Carreton, T. Van Cutsem, S. Mostinckx, and W. De Meuter. A survey on

reactive programming. ACM Computing Surveys, 2012.

[95] Cooper, G. H. and Krishnamurthi, S. 2006. Embedding dynamic dataflow in a call-by-value

language. In ESOP’06: Proceedings of the 15th European conference on Programming Languages

and Systems. Springer-Verlag, Berlin, Heidelberg, pp. 294–308.

[96] Cooper, G. H. 2008. Integrating dataflow evaluation into a practical higher-order call-by-

value language. Ph.D. thesis, Providence, RI, USA.

[97] akka, http://akka.io/

[98] akka, java documentation, http://doc.akka.io/docs/akka/2.3.12/java.html

[99] Quasar, http://www.paralleluniverse.co/quasar/

[100] Quasar, documentation, http://docs.paralleluniverse.co/quasar/

http://akka.io/
http://doc.akka.io/docs/akka/2.3.12/java.html
http://www.paralleluniverse.co/quasar/
http://docs.paralleluniverse.co/quasar/

