
	
D4.1	–Description	of	the	Supported	Metadata	Annotations	

	

	
1/	32	

	
	

	

	

	

	

	

	

	

	

	

Deliverable	D4.1	

Description	of	the	Supported	Metadata	Annotations	

	

	

	

	

	

Editor(s):	 Panagiotis	Gouvas	

Responsible	Organization(s):	 Ubitech	Ltd	

Version:	 1.00	

Status:	 Final	

Date:	 13/06/2016	

Dissemination	level:	 Public	

	

	

	

Ref. Ares(2016)2768135 - 14/06/2016

	

	
2/	32	

	
	

	

Deliverable	fact	sheet	

Grant	Agreement	No.:	 645372	

Project	Acronym:	 ARCADIA	

Project	Title:	 A	 novel	 reconfigurAble	 by	 design	 highly	 distRibuted	 appliCAtions	
Development	paradIgm	over	progrAmmable	infrastructure	

Project	Website:	 http://www.arcadia-framework.eu/	

Start	Date:	 01/01/2015	

Duration:	 36	months	

	

Title	of	Deliverable:	 D4.1	
Description	of	the	Supported	Metadata	Annotations	

Related	WP:	 WP4	–	ARCADIA	Development	Toolkit		

Due	date	according	to	contract:	 31/03/2016	

	

Editor(s):	 Panagiotis	Gouvas	

Contributor(s):	 Constantinos	Vassilakis,	 Eleni	 Fotopoulou,	Anastasios	Zafeiropoulos	
(UBITECH)	

Alessandro	Rossini	(SINTEF)	

Nikos	Koutsouris	(WINGS)	

George	Kioumourtzis	(ADITESS)	

Reviewer(s):	 Nikos	Koutsouris	(WINGS)	

George	Kioumourtzis	(ADITESS)	

Approved	by:	 All	Partners	

	

Abstract:	 This	deliverable	provides	a	description	of	the	metadata/annotations	
that	 are	 supported	 by	 the	 ARCADIA	 software	 development	
paradigm,	based	on	the	identified	requirements	in	WP2.	

Keyword(s):	 Microservice	 Development,	 Application	 Lifecycle	 Management,	
Annotations	

	

	

	

	
3/	32	

	
	

Partners

Insight Centre for Data Analyt ics,
National University of Ire land, Galway

Ireland

St iftelsen SINTEF Norway

Technische Universität Berl in Germany

Consorzio Nazionale Interuniversitar io
per le Telecomunicazioni

Ita ly

Univerza v L jubl jani S lovenia

UBITECH Greece

WINGS ICT Solutions Information &
Communication Technologies EPE

Greece

MAGGIOLI SPA Italy

ADITESS Advanced Integrated
Technology Solut ions and Services Ltd

Cyprus

	

	
4/	32	

	
	

	

	

	
5/	32	

	
	

Revision	History	
	
Version	 Date	 Editor(s)	 Remark(s)	
0.1	 01/03/2016	 Panagiotis	Gouvas	(UBITECH)	 Defining	ToC	

0.2	 20/04/2016	 Panagiotis	Gouvas	(UBITECH)	

Anastasios	Zafeiropoulos	(UBITECH)	

Alessandro	Rossini	(SINTEF)	

Nikos	Koutsouris	(WINGS)	

George	Kioumourtzis	(ADITESS)	

First	version	with	inputs	from	partners		

0.3	 17/05/2016	 Panagiotis	Gouvas	(UBITECH)	

Eleni	 Fotopoulou,	 Constantinos	
Vassilakis	(UBITECH)	

Alessandro	Rossini	(SINTEF)	

Nikos	Koutsouris	(WINGS)	

George	Kioumourtzis	(ADITESS)	

Additions	 to	 all	 chapters	 and	 consolidated	
version	

0.4	 30/05/2016	 Nikos	Koutsouris	(WINGS)	

George	Kioumourtzis	(ADITESS)	

Internal	review	

1.0	 13/06/2016	 Panagiotis	Gouvas	(UBITECH)	 Final	 version	 taking	 into	 account	 internal	
review	comments	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
6/	32	

	
	

	
	
	
	
	
	

	 Statement	of	originality:		

This	 deliverable	 contains	 original	 unpublished	 work	 except	 where	 clearly	 indicated	 otherwise.	
Acknowledgement	of	previously	published	material	and	of	 the	work	of	others	has	been	made	 through	
appropriate	citation,	quotation	or	both.	

	

	
7/	32	

	
	

Executive	Summary	
ARCADIA	 aims	 to	 provide	 a	 novel	 reconfigurable-by-design	 highly-distributed	 applications	 (a.k.a.	 HDAs)	

development	 paradigm	 over	 programmable	 cloud	 infrastructure.	 Such	 a	 novel	 development	 paradigm	 is	

needed	to	take	advantage	of	the	emerging	programmability	of	the	cloud	infrastructure,	and	hence	develop	

reconfigurable-by-design	 applications	 that	 support	 high	 performance,	 scalability,	 failure	 prevention	 and	

recovery,	 and	 in	 general	 self-adaptation	 to	 changes	 in	 the	 execution	 environment.	 The	 services	 that	

comprise	 an	 HDA	 should	 support	 a	 specific	 set	 of	 characteristics	 in	 order	 to	 take	 full	 advantage	 of	 the	

underlying	programmability	layer.	More	specifically,	there	are	at	least	eight	functional	characteristics	that	

should	be	met.	According	to	these,	any	service	that	takes	part	in	an	HDA	should:	

a. expose	its	configuration	parameters	along	with	their	metadata;	

b. expose	chainable	interfaces	which	will	be	used	by	other	native	applications	in	order	to	create	a	service	

graph;	

c. expose	required	interfaces	which	will	be	also	used	during	the	creation	of	a	service	graph;	

d. expose	quantitative	metrics	regarding	the	QoS	of	the	native	application;	

e. encapsulate	a	lifecycle-management	programmability	layer	which	will	be	used	during	the	placement	of	

one	service	graph	in	the	infrastructural	resources;	

f. be	stateless	in	order	to	be	horizontally	scalable	by	design;	

g. be	reactive	to	runtime	modification	of	offered	resources	in	order	to	be	vertically	scalable	by	design;	

h. be	agnostic	to	physical	storage,	network	and	general	purpose	resources.	

In	the	frame	of	ARCADIA	the	HDAs	can	be	either	Legacy	applications,	which	are	existing	applications	that	

are	already	available	in	an	executable	format	and	have	to	be	orchestrated	by	the	ARCADIA	Orchestrator;	or	

Native	 ARCADIA	 applications,	which	 benefit	 from	 the	 full	 set	 of	 capabilities	 of	 the	 framework	 or	 Hybrid	

applications	 that	 consist	 of	 application	 tiers	 from	 both	 cases	 above.	 The	 purpose	 of	 the	 ARCADIA	

annotation	framework	-as	described	in	the	current	manuscript-	is	to	make	use	of	the	extensibility	features	

of	modern	programming	languages	and	come	up	with	specific	sets	of	annotations	that	will	be	used	during	

runtime	 in	 order	 to	 automate	 at	 a	 big	 extend	 the	 business	 logic	 that	 relates	 to	 the	 aforementioned	

characteristics.	 Therefore,	 ARCADIA	 makes	 use	 of	 JAVA’s	 extensibility	 mechanisms	 namely;	 “JSR-175:	 A	

Metadata	 Facility	 for	 the	 Java	 Programming	 Language”1	 and	 “JSR-269:	 Pluggable	 Annotation	 Processing	

API”2	 to	 provide	 a	 set	 of	 annotations	 that	 automatically	 invoke	 runtime	 handlers	 related	 to	 component	

																																																													
1https://jcp.org/en/jsr/detail?id=175	
2https://jcp.org/en/jsr/detail?id=269	

	

	
8/	32	

	
	

management,	configuration	management,	management	of	performance	metrics,	management	of	 lifecycle	

and	management	of	dependencies.		

	

	
9/	32	

	
	

Table	of	Contents	
EXECUTIVE	SUMMARY	..	7	

TABLE	OF	CONTENTS	..	9	

LIST	OF	FIGURES	..	10	

1	 INTRODUCTION	..	11	

1.1	 PURPOSE	AND	SCOPE	..	11	

2	 THE	ROLE	OF	THE	ARCADIA	ANNOTATIONS	...	12	

2.1	 NATIVE	ARCADIA	APPLICATIONS	AND	THEIR	LIFECYCLE	...	12	
2.2	 WHY	AN	ANNOTATION	FRAMEWORK?	..	15	

3	 ARCADIA	ANNOTATIONS	...	17	

3.1	 COMPONENT	MANAGEMENT	...	17	
3.2	 CONFIGURATION	MANAGEMENT	..	19	
3.3	 COMPONENT’S	METRICS	..	20	
3.4	 LIFECYCLE	MANAGEMENT	...	22	
3.5	 DEPENDENCY	MANAGEMENT	...	23	

4	 USAGE	OF	ANNOTATIONS	..	25	

4.1	 ARCADIA	WEB-BASED	IDE	ENVIRONMENT	...	25	
4.2	 VALIDATION	OF	ANNOTATIONS	&GENERATION	OF	THIN	LAYER	..	26	

5	 CONCLUSIONS	..	29	

REFERENCES	..	30	

ANNEX	I	–	SAMPLE	ANNOTATED	COMPONENT	..	31	

	

	

	

	

	
10/	32	

	
	

List	of	Figures	
Figure	1	-	(a)	HDA	Indicative	Breakdown,	(b)	HDA	horizontal	scaling.	...	13	
Figure	2	-	Overview	of	ARCADIA	Annotations	..	17	
Figure	3	-	ArcadiaComponent	Annotation	..	18	
Figure	4	-	Serialization	Model	for	a	specific	component	..	19	
Figure	5–	Configuration	ParameterAnnotation	..	20	
Figure	6–	ArcadiaMetric	Annotation	..	21	
Figure	7–	ArcadiaMetrics	Annotation	...	21	
Figure	8–	LifecycleInitialize	Annotation	..	22	
Figure	9–	LifecycleStart	Annotation	..	23	
Figure	10–	LifecycleStop	Annotation	..	23	
Figure	11–	DependencyExport	Annotation	..	24	
Figure	12–	DependencyResolutionHandler	Annotation	...	24	
Figure	13	–	Development	of	ARCADIA	component	through	web-based	IDE	..	26	
Figure	14–	Maven	module	that	performs	the	Annotation	introspection	...	27	
	

	

	
11/	32	

	
	

1 Introduction	

1.1 Purpose	and	Scope	

This	 document	 provides	 a	 description	 of	 the	 ARCADIA	 annotation	 framework	 that	 will	 be	 used	 for	 the	

development	of	Highly	Distributed	Applications.	The	annotations	are	formally	an	elegant	feature	of	modern	

programming	languages	(e.g.	Java	and	C#)	that	allow	developers	to	‘decorate’	their	programs	with	specific	

tags	(i.e.	the	annotations).	This	decoration	provides	to	the	developed	program	specific	functionality	which	

is	 either	 design-time	 (i.e.	 during	 compilation)	 or	 run-time	 (i.e.	 during	 execution).	 This	 functionality	 may	

span	 to	 different	 aspects	 such	 as	 automated	 code	 generation,	 automated	 injection	 of	 business	 logic,	

design-time	validation	etc.	

As	 already	mentioned,	 ARCADIA	 aims	 to	 provide	 a	 novel	 reconfigurable-by-design	 and	 highly-distributed	

applications	 development	 paradigm	 over	 programmable	 cloud	 infrastructure.	 Such	 a	 novel	 development	

paradigm	 is	needed	 to	 take	advantage	of	 the	emerging	programmability	of	 the	 cloud	 infrastructure,	 and	

hence	 develop	 reconfigurable-by-design	 applications	 that	 support	 high	 performance,	 scalability,	 failure	

prevention	and	recovery,	and	in	general	self-adaptation	to	changes	in	the	execution	environment.	To	this	

end,	 the	 annotation	 framework	 is	 the	 cornerstone	 framework	 that	 is	 utilised	 in	 order	 to	 implement	 the	

development	paradigm.	

The	purpose	of	this	deliverable	is	to	elaborate,	on	the	one	hand,	on	the	exact	annotations	that	have	been	

designed	and	on	 the	other	hand,	on	 the	business	 logic	 that	 is	bound	 to	 these	annotations.	 The	business	

logic	is	tailored	to	the	functional	requirements	of	HDAs.	Therefore,	Chapter	2	is	devoted	on	the	analysis	of	

the	 exact	 characteristics	 that	 HDA	 have	 and	 how	 these	 characteristics	 can	 be	 addressed	 using	 an	

annotation	framework.		

Chapter	3	provides	the	core	analysis	of	 the	annotations.	The	annotations	are	 functionally	grouped	 in	 five	

categories	according	to	the	nature	of	the	business	logic	that	is	bound	to	the	usage	of	the	annotation.	These	

categories	 include	 component	 management,	 configuration	 management,	 management	 of	 performance	

metrics,	 management	 of	 lifecycle,	 and	 management	 of	 dependencies.	 For	 each	 of	 these	 categories	 the	

exact	business	logic	is	discussed.	We	discuss	in	Chapter	4,	the	usage	of	the	annotation	framework	through	

the	ARCADIA	IDE,	which	is	under	development.	Finally,	Chapter	5	concludes	the	deliverable.			

	

	

	
12/	32	

	
	

2 The	Role	of	the	ARCADIA	Annotations	
ARCADIA	aims	to	provide	a	programming	paradigm	for	Highly	Distributed	Applications	(a.k.a.	HDAs).	Such	

applications	are	 the	ones	 that	are	built	 in	order	 to	 run	on	multi-cloud	 infrastructure.	The	structure	of	an	

HDA	 enables	 high	 flexibility	 in	 reusing	 and	 composingbasic	 services	 such	 as	 databases,	 web	 front-end,	

authentication	 modules,	 network	 functions	 and	 the	 like.	 To	 this	 end,	 according	 to	 the	 architectural	

deliverable	 [2],	 the	 following	 application	 types	 can	 be	 defined:	 a)	 Legacy	 applications	 that	 are	 existing	

applications	that	are	already	available	in	an	executable	format	and	have	to	be	orchestrated	by	the	ARCADIA	

Orchestrator;	b)	Native	ARCADIA	applications	that	benefit	from	the	full	set	of	capabilities	of	the	framework	

and	c)	Hybrid	applications	that	consist	of	application	tiers	from	both	the	cases	above.		

The	purpose	of	this	deliverable	is	to	elaborate	on	the	ARCADIA	annotations	that	are	used	in	order	to	create	

native	 ARCADIA	 applications.	 The	 other	 two	 types	 of	 HDAs	 may	 be	 functional	 equivalent	 to	 the	 native	

ARCADIA	 applications	 if	 someone	 undertakes	 the	 task	 of	 creating	 thin	 wrappers	 that	 emulate	 the	

functionalities	 that	 is	 automatically	offered	by	 the	native	apps.	 Therefore,	 the	 reasonable	questions	 that	

are	raised	are	the	following:	a)	what	are	the	functional	characteristics	of	an	ARCADIA	native	application?	b)	

what	was	the	reason	behind	the	architectural	choice	of	code-level	annotations?	The	following	sections	will	

shed	light	regarding	both	of	these	questions.		

2.1 Native	ARCADIA	Applications	and	their	Lifecycle	
As	 already	 discussed,	 a	 Highly	 Distributed	 Application	 (HDA)	 is	 defined	 as	 a	 reconfigurable-by-design	

distributed	scalable	structured	system	of	software	entities	constructed	to	illustrate	a	network	service	when	

implemented	 to	 run	 over	 a	 programmable	 cloud	 infrastructure.	 A	 HDA	 is	 a	 multi-tier	 cloud	 application	

consisting	of	application’s	tiers	chained	with	other	software	entities	illustrating	network	functions	applied	

to	the	network	traffic	towards/from	and	between	application’s	tiers.		The	term	‘reconfigurable-by-design’	

may	be	considered	as	an	extension	of	the	term	‘context	aware	adaptable’	[5].	A	HDA	not	only	is	designed	to	

be	 context-aware,	 able	 to	 adapt	 its	 processes	 to	 the	 context	but	 also	 is	 able	 to	 reconfigure	 its	 structure	

accordingly,	share	its	context	and	enable	programmability	through	exposing	a	programming	interface.		

Thus,	a	HDA	may	expand	or	shrink	by	supporting	horizontal	scaling	(out	and	in)	for	each	software	entity	in	

the	service	chain	while	may	reform	(change	 its	structure)	by	 including	or	excluding	software	components	

from	 the	 chain	 and/or	 change	 routing	 among	 them	as	needed.	A	HDA	may	expose	 its	 context	 and	 state	

while	 it	 may	 provide	 a	 programmable	 interface	 for	 communication	 and	 externally	 being	 adapted	 and	

configured	 or	 re-used	 as	 a	 component	 of	 other	 HDAs.	 	 Each	 Application	 tier	 of	 a	 HDA	 is	 a	 distinct	

application-specific	logical	operation	layer.	Each	other	software	entity	involved	in	the	Application’s	chain	is	

a	Virtual	 Function	 (VF)	 specific	 logical	 operation	 layer.	 Each	Application	 tier	 and	other	 involved	 software	

	

	
13/	32	

	
	

entity	provide/expose	to	each	other	a	Binding	 Interface	(hereinafter	BI)	 letting	each	other	have	access	to	

provided	functionalities	and	supporting	communication.		

While	developing	an	Application	Tier,	 it	 is	necessary	to	have	knowledge	of	the	BI	of	every	other	software	

component	 whose	 functionalities	 are	 required	 to	 be	 utilized	 within	 this	 Application	 Tier.	 Recursively,	 a	

component	of	a	HDA	chain	may	also	be	a	chain	 itself;	an	already	developed	HDA	or	a	VF	chain	exposing	

required	functionalities.	There	is	no	need	to	communicate	with	every	component	of	the	nested	chain	but	

with	a	Service	Binding	Interface	(SBI)	providing	for	communication	and	access	to	exposed	functionalities.	

The	developer	of	an	application	tier	should	annotate	its	code	with	required	qualitative	and	quantitative	

characteristics	according	to	the	context	model.	Annotations	can	be	included	within	the	source	code	and	

be	properly	 translated	before	building	 the	executable,	as	well	as	externally	accompany	 the	executable	

and	be	properly	translated	by	other	components	of	the	architecture	during	executable’s	placement	and	

runtime.			

An	indicative	HDA	is	depicted	in	Figure	1(a)	that	corresponds	to	a	graph	containing	a	set	of	tiers	along	with	

a	set	of	functions	implemented	in	the	form	of	Virtual	Functions	(VFs).	It	should	be	noted	that	in	ARCADIA	

we	are	 adopting	 the	 term	Virtual	 Functions	 (VFs)	 instead	of	 the	 term	Virtual	Networking	 Function	 (VNF)	

that	is	denoted	in	ETSI	Network	Function	Virtualization	(NFV)	[6]	since	we	do	not	only	refer	to	networking	

functions	 but	 to	 generic	 functions.	 Each	 element	 in	 the	 graph	 has	 to	 be	 accompanied	 with	 a	 set	 of	

quantitative	 characteristics	 (e.g.	 set	 of	 metrics	 that	 can	 be	 monitored)	 and	 constraints	 (e.g.	 resource	

capacity	 constraints,	 dependencies).	 In	 Figure	 1(b)	 an	 application	 tier	 (T4)	 of	 the	 example	 is	 shown	 to	

horizontally	 scale	while	 the	 chain	 reconfigures	 itself	 by	 expanding	 and	 reforming,	 adding	 as	well	 a	 Load	

Balancer	component	as	now	required.		

	

Figure	1	-	(a)	HDA	Indicative	Breakdown,	(b)	HDA	horizontal	scaling.	

	

	
14/	32	

	
	

From	 an	 upper	 view,	 the	 lifecycle	 of	 an	 HDA	 starts	 from	 the	 development	 phase,	 followed	 by	 the	

deployment	 phase	 and	 operation	 phase	 and	 ends	 with	 its	 termination.	 Each	 phase	 requires	 several	

functional	 components	 of	 the	 architecture	 to	work	 together	 to	 provide	 for	 and	 build	 an	 HDA,	 deploy	 it	

assigning	resources	from	an	infrastructure,	run	it	while	meeting	objectives	-developer	wise	and/or	service	

provider	 wise-	 at	 all	 times	 and	 assure	 proper	 release	 of	 resources	 when	 terminates	 its	 operation.	

Deployment,	 Operation	 and	 Termination	 are	 supported	 by	 the	 Smart	 Controller	 as	 the	 intermediate	

between	 the	applications	and	 the	 infrastructure,	while	development	 is	 supported	by	 several	 repositories	

providing	easy	access	to	reusable	components	and	the	defined	context	model	providing	access	to	the	set	of	

annotations	and	descriptions.	

Taking	under	consideration	all	the	above	it	is	time	to	define	the	8	functional	characteristics	of	an	ARCADIA	

Native	application.	Any	ARCADIA	Native	application	should:		

i. expose	its	configuration	parameters	along	with	their	metadata	(e.g.	what	the	acceptable	values?,	can	

the	parameter	change	during	the	execution?);	

j. expose	chainable	interfaces	which	will	be	used	by	other	native	applications	in	order	to	create	a	service	

graph;	

k. expose	required	interfaces	which	will	be	also	used	during	the	creation	of	a	service	graph;	

l. expose	quantitative	metrics	regarding	the	QoS	of	the	native	application;	

m. encapsulate	a	 lifecycle-management	programmability	 layer	which	will	be	used	during	 the	placement	

of	one	service	graph	in	the	infrastructural	resources;	

n. be	stateless	in	order	to	be	horizontally	scalable	by	design;	

o. be	reactive	to	runtime	modification	of	offered	resources	in	order	to	be	vertically	scalable	by	design;	

p. be	agnostic	to	physical	storage,	network	and	general	purpose	resources.	

The	 analysis	 of	 these	 principles	 super-exceed	 the	 scope	 of	 the	 current	 deliverable.	 The	 reader	 should	

consult	D4.2	[4]	where	these	characteristics	are	analysed.	Towards	this	context,	the	role	of	the	annotation	

framework	is	extremely	concrete.	The	annotations	will	handle:	

• the	 automatic	 extraction	 and	 setting	 of	 configuration	 parameters	 according	 to	 the	 runtime	

characteristics	of	a	native	application	

• the	automatic	registration	of	the	BI	to	central	registry	

• the	run-time	selection	and	chaining	of	applications	based	on	the	BI	category	

• the	basic	lifecycle	management	i.e.	(Deploy,	Start,	Stop,	Undeploy)	

• the	automatic	interaction	with	the	ARCADIA	VFs	that	are	responsible	for	scaling	

	

	
15/	32	

	
	

2.2 Why	an	Annotation	Framework?	
Modern	 programming	 languages	 (such	 as	 Java	 and	 C#)	 offer	 an	 extremely	 useful	 mechanism	 named	

‘annotations’	that	can	be	exploited	for	several	purposes.	Annotations	are	a	form	of	metadata	that	provide	

data	about	a	program	that	is	not	part	of	the	program	itself.	 In	other	words,	a	specific	set	of	design-time	

metadata	can	be	used	at	the	source-code	level	which	will	drive	the	normative	schema	creation.	As	already	

stated	 in	 D2.3	 [2],	 from	 the	 software	 engineering	 perspective,	 annotations	 are	 practically	 a	 special	

interface.	Such	an	interface	may	be	accompanied	by	several	constraints	such	as	the	parts	of	the	code	that	

can	be	annotated	(it	is	called	@Target	in	Java),	the	parts	of	the	code	that	will	process	the	annotation	etc.	

An	indicative	annotations	declaration	using	Java	is	presented	in	Table	2-1.	

Table	2-1:	Indicative	declaration	of	an	annotation	type

@Target({ElementType.METHOD	})	

@Retention(RetentionPolicy.RUNTIME)	

@Inherited	

@Documented																														

public	@interface	ArcadiaService{	

				String	controllerURI()	default	"htttp://controller.arcadia.eu";					

}	

	

According	 to	 this	declaration,	only	 Java	methods	can	be	annotated	with	 the	@ArcadiaService	annotation	

(@Target({ElementType.METHOD	})).	Furthermore,	 the	compilation	procedure	will	 ignore	 the	annotation;	

yet	the	compiler	will	keep	the	annotation	at	the	binary	level	since	the	it	will	be	processed	during	runtime	

(@Retention(RetentionPolicy.RUNTIME)).	 Furthermore,	 if	 the	 annotation	 method	 is	 overridden,	 the	

annotation	will	 be	 automatically	 propagated	 to	 the	 overridden	method.	 In	 addition,	 annotation	may	 be	

accompanied	by	properties	that	can	be	set	during	declaration.	 In	the	aforementioned	case,	the	property	

‘controllerURI’	is	used	to	denote	the	URI	of	the	hypothetical	ARCADIA	Smart	Controller.	

Annotations	 can	 be	 used	 in	 multiple	 ways.	 Each	 framework	 selects	 one	 handling	 technique	 in	 order	 to	

process	 annotations.	 In	 general,	 there	 are	 three	 strategies	 for	 annotations’	 handling.	 More	 specifically	

these	strategies	include:		

a. Source	Generation	Strategy:	This	annotation	processing	option	works	by	reading	the	source	code	

and	 generating	 new	 source	 code	 or	modifying	 existing	 source	 code,	 and	 non-source	 code	 (XML,	

documentation,	etc.).	The	generators	typically	rely	on	container	or	other	programming	convention	

	

	
16/	32	

	
	

and	they	work	with	any	retention	policy.	Indicative	frameworks	that	belong	to	this	category	are	the	

Annotation	Processing	Tool3	(APT),	XDoclet4	etc.	

b. Bytecode	 Transformation	 Strategy:	 These	 annotation	 handlers	 parse	 the	 class	 files	 with	

Annotations	and	emit	modified	classes	and	newly	generated	classes.	They	can	also	generate	non-

class	 artifacts	 (like	 XML	 configuration	 files).	 Bytecode	 transformers	 can	 be	 run	 offline	 (compile	

time),	at	load-time,	or	dynamically	at	run-time	(using	JVMTI5	API).	They	work	with	class	or	runtime	

retention	 policy.	 Indicative	 bytecode	 transformer	 examples	 include	 AspectJ6,	 Spring,	 Hibernate,	

CGLib7,	etc.	

c. Runtime	 Reflection	 Strategy:	 	 This	 option	 uses	 Reflection	 API	 to	 programmatically	 inspect	 the	

objects	 at	 runtime.	 It	 typically	 relies	 on	 the	 container	 or	 other	 programming	 convention	 and	

requires	runtime	retention	policy.	The	most	prominent	testing	frameworks	like	JUnit8	and	TestNG9	

use	runtime	reflection	for	processing	the	annotations.	

From	the	three	strategies	that	are	presented	above,	 the	first	one	will	not	be	utilized	at	all.	However,	 the	

second	and	the	third	will	be	used.	More	specifically,	the	‘byte	code	transformation	strategy’	will	be	used	in	

order	 to	 automate	 the	 procedure	 of	 normative	 schema	 generation	 regarding	 the	 facets	 of	metadata,	

requirements	 and	 configuration.	 To	 this	 end,	 specific	 type	 of	 annotations	 that	will	 be	 processed	 during	

compilation	 will	 generate	 representative	 schema	 instances	 which	 are	 in	 line	 with	 the	 ARCADIA	 Context	

Model	 (see	 Deliverable	 D2.2	 [1]).	 Finally,	 the	 ‘runtime	 reflection	 strategy’	 will	 be	 utilized	 in	 order	 to	

dynamically	implement	specific	behaviors	that	relate	to	programming	interface	binding,	measurement	of	

performance	metrics	and	governance.		

ARCADIA	makes	use	of	JAVA’s	extensibility	mechanisms	namely;	“JSR-175:	A	Metadata	Facility	for	the	Java	

Programming	 Language”10	 and	 “JSR-269:Pluggable	 Annotation	 Processing	 API”11	 to	 provide	 a	 set	 of	

annotations	that	will	be	described	below	in	order	to	offer	several	functionalities.	

																																																													
3http://docs.oracle.com/javase/7/docs/technotes/guides/apt	
4http://xdoclet.sourceforge.net/xdoclet/index.html	
5http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html	
6https://eclipse.org/aspectj	
7https://github.com/cglib/cglib	
8http://junit.org	
9http://testng.org/doc/index.html	
10https://jcp.org/en/jsr/detail?id=175	
11https://jcp.org/en/jsr/detail?id=269	

	

	
17/	32	

	
	

3 ARCADIA	Annotations	
Currently,	there	are	14	annotations	that	are	defined,	which	serve	also	a	functional	purpose.	An	overview	of	

these	annotations	 is	presented	on	Figure	212.	The	annotations	are	 functionally	grouped	 in	 five	categories	

according	to	the	nature	of	the	business	logic	that	is	bound	to	the	usage	of	the	annotation.	These	categories	

include	 component	 management,	 configuration	 management,	 management	 of	 performance	 metrics,	

management	of	lifecycle	and	management	of	dependencies.	

	

Figure	2	-	Overview	of	ARCADIA	Annotations	

In	the	next	sections	we	will	elaborate	each	group	separately.	

3.1 Component	Management	
The	first	annotation	that	a	developer	can	use	is	the	@ArcadiaComponent	annotation.	The	definition	of	the	
annotation	is	depicted	on	Figure	3.As	it	is	depicted	(from	the	ElementType.Type)	the	specific	annotation	is	a	
class-level	 annotation	 i.e.	 it	 can	 decorate	 any	 Java	 class.	 Therefore,	 any	 class	 that	 is	 annotated	 as	
component	 will	 be	 handled.	 The	 handling	 that	 is	 bound	 to	 the	 annotation	 refers	 to	 the	 automatic	
generation	 of	 the	 formal	 component	 artefact	 and	 its	 registration	 to	 the	 ARCADIA	 Repository.	 More	

																																																													
12https://github.com/ubitech/arcadia-framework/tree/master/annotation-libs/src/main/java/eu/arcadia/annotations	

	

	
18/	32	

	
	

specifically,	as	already	analysed	in	D2.3[2]	the	creation	of	an	HDA	application	involves	the	composition	of	
several	 components	 that	 are	 already	 registered	 in	 a	 repository.	 	 The	 meta-model	 of	 the	 “chainable”	
component	is	depicted	on	Figure	4.	

	

Figure	3	-	ArcadiaComponent	Annotation	

	

	
19/	32	

	
	

	

Figure	4	-	Serialization	Model	for	a	specific	component	

As	it	is	depicted	in	Figure	4	the	formal	metamodel	is	expressive	enough	to	capture	the	“chainable”	profile	
of	a	component.	However	as	 it	will	be	shown	below,	the	various	elements	that	comprise	the	model	 (e.g.	
ExposedChainableEndpoints)	are	indicate	through	different	annotations.	

3.2 Configuration	Management	
Another	 annotation	 that	 a	 developer	 can	use	 is	 the	@ArcadiaConfigurationParameter.	 The	definition	of	
the	 annotation	 is	 depicted	 on	 Figure	 5.	 As	 it	 is	 shown,	 this	 annotation	 is	 also	 a	 class-level	 annotation.	
Through	this	annotation	a	developer	can	declare	a	configuration	parameter	which	will	automatically	enrich	
the	component	model	that	is	registered	in	the	ARCADIA	repository.	The	annotation	supports	5	arguments	
i.e.	 ‘name’,	 ‘description’,	 ‘parameterType’,	 ‘defaultvalue’	 and	 ‘mutableafterstartup’.	 ‘Name’	 is	 used	 to	
declare	 the	method-name	 that	 exposes	 a	 configuration	 parameter.	 It	 should	 be	 clarified	 that	 using	 the	
principle	 of	 reflection	 the	methods	 setName	 and	getName	 are	 automatically	 exposed	 as	we	will	 explain	
later.	 The	 ‘description’	 provides	 a	 detailed	 explanation	 of	 the	 configuration	 parameter.	 The	
‘parameterType’	 denotes	 if	 a	 parameter	 is	 single-value	 or	multi-value.	 Finally,	while	 the	 ‘defaultvalue’	 is	
self-explanatory	 the	 ‘mutableafterstartup’	 denotes	 whether	 or	 not	 a	 configuration	 parameter	 can	 be	
altered	after	the	component	initialization.		

	

	
20/	32	

	
	

	

Figure	5–	Configuration	ParameterAnnotation	

The	 enrichment	 of	 the	 component	 model	 is	 not	 the	 only	 business	 logic	 that	 is	 bound	 to	 the	 specific	
annotation.	The	most	crucial	aspect	is	the	automatic	generation	of	a	thin	REST	layer	that	is	responsible	to	
expose	 the	 configuration	 parameters	 offering	 a	 ‘proxy’	 for	 both	 setters	 and	 getters.	 This	 REST	 layer	 is	
consumed	only	by	the	ARCADIA	Smart	Controller.	As	discussed	 in	D3.1	 [3]	any	service	graph	 is	 related	to	
two	types	of	policies.	The	first	policy	is	the	deployment	policy	and	the	second	is	the	runtime	policy.	Part	of	
the	 runtime	 policy	 is	 the	 reconfiguration	 of	 the	 component	 based	 on	 the	 monitoring	 streams	 that	 are	
generated.	A	service	provider	may	trigger	the	change	of	a	mutable	configuration	parameter	during	runtime	
in	 the	 frame	of	 a	policy	execution.	 This	 change	will	 be	performed	based	on	 the	 interaction	of	 the	Smart	
Controller	with	the	aforementioned	REST	layer.	

3.3 Component’s	Metrics	
The	 third	 family	 of	 annotations	 that	 are	 provided	 to	 the	 developers	 are	 the	@ArcadiaMetric	 and	 the	
@ArcadiaMetrics.	Both	of	these	annotations	are	depicted	on	Figure	6	and	Figure	7,	respectively.		

	

	
21/	32	

	
	

	

Figure	6–	ArcadiaMetric	Annotation	

	

Figure	7–	ArcadiaMetrics	Annotation	

Since	 the	@ArcadiaMetrics	 annotation	 is	 just	 an	 easy	 way	 to	 declare	 multiple	@ArcadiaMetric	 we	 will	
emphasize	 our	 analysis	 in	 the	 latter.	 	@ArcadiaMetric	 is	 a	 class-level	 annotation	 and	 is	 used	 to	 declare	
methods	that	return	specific	user-defined	measurements.	An	indicative	usage	of	the	annotation	would	be	
the	following:	

@ArcadiaMetric(name="averageProcessingTime",description	 =	 "URL	 hashing	 algorithm	
performance",unitofmeasurement	 =	 "msec",valuetype	 =	 ValueType.SingleValue,maxvalue	 =	
"6000",minvalue	=	"1",higherisbetter	=	false)	

	

	

	
22/	32	

	
	

As	 it	 is	depicted	the	@ArcadiaMetric	annotation	requires	six	arguments.	The	 ‘name’	denotes	the	method	
that	 implements	 the	 actual	 stream	 extraction.	 Therefore,	 the	 indicative	 "averageProcessingTime"	 infers	
that	there	is	a	getAverageProcessingTime()	method	that	can	be	invoked.	The	‘unitofmeasurement’	provides	
the	appropriate	unit	that	can	be	used	during	quantification	while	the	min	and	max	denote	the	respective	
bounds.	 The	Boolean	 flag	 ‘higherisbetter’	 indicate	whether	 the	 increase	of	 a	measurement	 is	 considered	
positive	or	not.	

The	business	 logic	 that	 is	bound	 to	 the	specific	annotation	 is	 the	automatic	generation	of	a	REST	service	
that	 exposes	 the	 monitoring	 stream	 based	 on	 the	 requests	 of	 a	 Smart	 Controller.	 This	 is	 completely	
analogous	 to	 the	 business	 logic	 that	 has	 been	 developed	 for	 the	@ArcadiaConfiguration;	 yet	 there	 is	 a	
significant	 difference.	 In	 the	 current	 case	 only	 a	 getter	 is	meaningful	 since	 the	 runtime	 policies	 that	 are	
enforced	require	the	handling	of	multiple	parallel	streams	that	refer	to	either	VM-metrics	of	user-defined	
metrics.	The	streams	that	refer	to	the	VM-metrics	are	embedded	in	the	VM	while	the	streams	that	refer	to	
the	 user-defined	 metrics	 are	 automatically	 generated	 through	 the	 runtime	 interpretation	 of	 the	
annotation.		

3.4 Lifecycle	Management	
A	crucial	aspect	 regarding	the	ARCADIA	components	 is	 the	application	 lifecycle	management	 (hereinafter	
ALM).	The	ALM	refers	 to	 the	entire	service	graph	as	along	as	 to	components	 that	participate	 in	a	service	
graph.	Since	a	service	graph	is	a	directed	acyclic	graph	the	components	entail	several	dependencies	among	
them.	Therefore,	 the	deployment	of	one	component	 follows	a	 strict	bootstrapping	protocol	according	 to	
which	 the	 component	 has	 to	 be	 firstly	 initialized	 (i.e.	 its	 execution	 environment	 is	 available),	 then	 its	
dependencies	have	to	be	resolved	and	finally	the	main	execution	context	should	start.	

	

Figure	8–	LifecycleInitialize	Annotation	

The	 implementation	 of	 the	 bootstrapping	 protocol	 is	 under	 the	 responsibility	 of	 the	 Smart	 Controller.	
However,	 the	 Smart	 Controller	 does	 not	 have	 the	 knowledge	 of	 the	 secrete	 internal	 states	 of	 the	
component.	 Therefore,	 specific	 annotations	 are	 required	 to	 denote	 the	 context	 initialization	 and	 the	
start/stop.	 These	 annotations	 are	 the	 @LifecycleInitialize	 (Figure	 8),	 @LifecycleStart	 (Figure	 9)	 and	
@LifecycleStop	(Figure	10),	respectively.	

	

	

	
23/	32	

	
	

	

Figure	9–	LifecycleStart	Annotation	

	

	

Figure	10–	LifecycleStop	Annotation	

As	 it	can	be	noticed,	 these	annotations,	contrary	 to	the	ones	that	we	have	examined	up	to	now,	are	not	
class-level	 but	 method-level.	 This	 is	 denoted	 by	 the	 ElementType.METHOD	 tag.	 This	 is	 deliberate	 since	
these	annotations	decorate	existing	methods	 in	 the	code	that	will	be	 invoked	when	the	Smart	Controller	
dictates.	 In	order	for	the	invocation	to	be	performed	a	pass-through	Rest	call	will	be	performed	from	the	
Controller	 to	 the	 component.	 This	 is	 completely	 analogous	 to	 what	 is	 happening	 in	 the	 case	 of	 the	
configuration	management	and	the	case	of	export	of	the	monitoring	streams.		

3.5 Dependency	Management	
The	 final	 set	 of	 annotations	 that	 can	 be	 used	 relate	 to	 the	 exposure	 and	 the	 usage	 of	 component’s	
interfaces.	As	already	analysed	thoroughly	in	D2.2	[1]	each	component	may	expose	one	or	more	interfaces	
after	 its	 initialization.	On	the	other	hand,	the	same	component	may	require	one	or	more	 interfaces	 from	
third-party	 components	 before	 the	 actual	 initialization.	 Handling	 both	 the	 advertisement	 of	 an	 interface	
and	the	chaining	requirement	is	performed	through	two	distinct	annotations	i.e.	the	@DependencyExport	
and	the	@DependencyResolutionHandler.	

	

	
24/	32	

	
	

	

Figure	11–	DependencyExport	Annotation	

@DependencyExport(class-level	 annotation)	 publishes	 to	 a	 high-available	 microservice	 repository	 the	
published	 interface	while	 the	@ResolutionHandler	decorates	a	method	which	will	handle	 the	output	of	a	
lookup	service	that	aims	to	identify	a	required	service.	

	

Figure	12–	DependencyResolutionHandler	Annotation	

	

It	should	be	noted	that	in	Annex	I,	a	completely	annotated	component	is	appended.	

	

	
25/	32	

	
	

4 Usage	of	Annotations	
ARCADIA	 is	 designed	 to	 help	 developers	 create	 and	 deploy	 applications	 quicker	 and	more	 efficiently.	 It	
automates	 many	 tasks	 such	 as	 code	 and	 annotation	 validation,	 application	 deployment	 and	 application	
monitoring.	 The	 development	 of	 components	 will	 be	 performed	 using	 the	 ARCADIA	 web-based	 IDE	
environment.	 Through	 this	 environment,	 developers	 can	 use	 the	 aforementioned	 annotations	 that	 are	
validated	by	the	smart	controller	and	are	automatically	interpreted	to	components.	This	stands	true	only	in	
the	case	of	native	applications.		

4.1 ARCADIA	web-based	IDE	environment	
As	 it	 is	explained	 in	D4.2[4]	the	 IDE	environment	relies	on	a	state-of-the-art	web-based	IDE	called	Eclipse	
Che13	which	gives	the	possibility	to	the	developers	to	develop	components	 in	a	collaborative	way.	Eclipse	
Che	 is	a	general-purpose	web-based	 IDE.	Che	 is	based	on	Docker14,	GWT15,	Orion16	and	RESTful	APIs	and	
offers	both	 client	 and	 server	 side	 capabilities.	The	 client-side	of	Che	 is	based	on	 the	Orion	editor,	 and	 it	
offers	most	of	the	features	expected	from	a	classic	IDE	such	as	automatic	code	completion,	error	marking,	
JAVA	“intelligence”	and	documentation.		On	the	other	hand,	the	server	side	is	responsible	for	managing	the	
code	 repository,	 compiling	and	executing	programs	and	managing	 runtimes.	 Through	a	 specific	ARCADIA	
plugin	that	is	being	developed	the	interaction	of	the	IDE	with	the	Smart	Controller	will	be	automated.	

The	 primary	 task	 of	 the	 ARCADIA	 IDE	 plugin	 is	 to	 assist	 developers	 during	 component	 development.	
Through	the	plug-in,	developers	can	view	all	available	ARCADIA	annotations,	including	some	Javadoc-based	
documentation,	 authenticate	with	 the	ARCADIA	 platform	 and	 trigger	 component	 validation,	 through	 the	
ARCADIA	server-side	plug-in.		

Specifically,	 when	 a	 developer	 starts	 writing	 an	 ARCADIA	 annotation,	 the	 plug-in	 offers	 auto-complete	
suggestions	where	developers	 can	 just	 choose	which	 annotation	 they	want	 to	 use.	 In	 addition,	 they	 can	
read	 the	 specifications	 of	 each	 annotation,	 like	 the	 required	 fields,	 naming	 conventions	 and	 examples.	
Moreover,	 if	 they	choose	 to	use	one	of	 the	provided	component	 templates,	 the	plug-in	will	manage	any	
ARCADIA	 requirement	 like	 maven	 dependencies.	 Using	 the	 web-based	 IDE,	 developers	 can	 develop	
components	that	adhere	to	the	ARCADIA	component	metamodel.	This	compliancy	is	achieved	through	the	
usage	 of	 specific	 annotations	 that	 allow	 developers	 to	 declare	 components,	 register	 configuration	
parameters,	define	chainable	endpoints	etc.	

The	usage	of	annotations	is	performed	in	a	seamless	way	through	the	development	environment.	Figure	13	
depicts	 the	 development	 of	 an	 actual	 component.	 As	 it	 is	 depicted	 the	 developer	 is	 using	 several	
annotations	 such	 as	@ArcadiaComponent,	@ArcadiaMetric,	@ArcadiaExport	 etc.	 The	 definition	 of	 these	
annotations	 during	 development	 is	 assisted	 by	 the	 IDE	 per	 se	 while	 the	 functional	 usage	 of	 these	
annotations	take	place	after	the	submission	of	the	executable	to	the	Smart	Controller.		

	

																																																													
13	https://eclipse.org/che/		
14	https://www.docker.com/		
15	http://www.gwtproject.org/		
16	https://orionhub.org/		

	

	
26/	32	

	
	

	

Figure	13	–	Development	of	ARCADIA	component	through	web-based	IDE	

	

4.2 Validation	of	Annotations	&Generation	of	Thin	layer	

After	the	submission	of	the	component	to	the	Smart	Controller,	the	system	performs	a	set	of	validations	in	
order	to	check	the	logical	validity	of	the	provided	annotations.	It	should	be	noted	that	the	structural	validity	
of	 the	 annotations	 is	 not	 checked	 since	 if	 the	 project	 compiles	 correctly	 structural	 validity	 is	 assured.	
However,	the	logical	validity	refers	to	a	set	of	aspects	such	as	the	uniqueness	of	the	component	name,	the	
existence	of	the	real	method-hooks	that	correspond	to	the	various	getters	(e.g.	getMetricX),	the	avoidance	
of	 conflicting	 versions,	 the	 existence	of	 chainable	 endpoints	 etc.	 All	 these	 are	 a	 small	 part	 of	 the	 logical	
validation	which	is	performed	using	Bytecode	introspection	techniques.	

The	 maven	 module	 that	 performs	 the	 actual	 introspection	 is	 called	 “annotationinterpreter”.	 Figure	 14	
depicts	the	exact	location	in	the	projects’	source	code	repository	where	this	module	exists.	The	source	code	
repository	is	located	at	the	following	url:	https://github.com/ubitech/arcadia-framework	

	

https://github.com/ubitech/arcadia-framework

	

	
27/	32	

	
	

	

Figure	14–	Maven	module	that	performs	the	Annotation	introspection	

When	the	component	passes	the	validation	phase,	the	executable	along	all	metadata	that	accompany	the	
executable	are	stored	in	a	structured	format	in	the	Smart	Controller’s	persistency	engine.	A	specific	parser	
that	 is	 embedded	 in	 the	 annotationinterpreter	 undertakes	 the	 task	 to	 transform	 the	 arguments	 of	 the	
annotations	 (e.g.	 ArcadiaComponent(name=”xxx”))	 to	 a	 serialized	 format	 that	 adheres	 to	 the	 ARCADIA	
Context	Model[2].		

The	 next	 step	 after	 the	 validation	 is	 the	 creation	 of	 the	 thin	 REST	 layer	 which	 is	 attached	 to	 each	
component.	 The	 thin	 REST	 layer	 is	 developed	 in	 the	 frame	of	 the	 ‘agent’	maven	module17.	 This	 agent	 is	
initialized	by	a	configuration	file	that	 is	generated	automatically	after	the	valid	 introspection.	The	snippet	
below	provides	such	configuration	for	the	real	service	that	is	provided	in	Annex	I.	

{

 "className": "eu.arcadia.annotationinterpreter.sample.URLShortener",

 "CNID": "d1e39865-02be-4b57-9896-6cde075d8f79",

 "lifecycleInitMethod": "init",

 "lifecycleStartMethod": "start",

 "lifecycleStopMethod": "stop",

 "dependencyResolutionHandlers": {},

 "dependencyBindingHandlers": {

 "MONGODB_CONNECTION": "bindMongoDB"

 },

 "metrics": [

 "hashedURLs",

 "averageProcessingTime"

																																																													
17	https://github.com/ubitech/arcadia-framework/tree/master/agent	

	

	
28/	32	

	
	

],

 "configurationParameters": [

 "hashLength"

]

}

When	the	component	is	activated	the	agent	bootstraps.	Upon	bootstrapping	a	REST	interface	is	exposed	to	

the	SmartController.	Such	a	REST	interface	for	the	service	is	provided	below.	

/conf/set/hashLength [POST]

{

 "value": "7"

}

/conf/get/hashLength [GET]

{

 "value": "7"

}

Metrics:

/metric/get/hashedURLs [GET]

{

 "value": "1"

}

/metric/get/averageProcessingTime [GET]

{

 "value": "1"

}

	

	
29/	32	

	
	

5 Conclusions	
The	purpose	of	 this	deliverable	was	 to	elaborate	on	 the	code-level	annotations	 that	have	been	designed	

and	on	the	business	 logic	that	 is	bound	to	these	annotations.	Annotations	per	se	are	features	of	modern	

programming	languages	that	allow	developers	to	‘decorate’	their	programs.	This	decoration	provides	to	the	

developed	program	specific	 functionality	which	 is	either	design-time	 (i.e.	during	compilation)	or	 run-time	

(i.e.	during	execution).	To	 this	end,	ARCADIA	made	use	of	 JAVA’s	extensibility	mechanisms	namely;	 “JSR-

175:	 A	 Metadata	 Facility	 for	 the	 Java	 Programming	 Language”	 and	 “JSR-269:Pluggable	 Annotation	

Processing	API”	to	provide	a	set	of	annotations	that	accelerates	the	development	of	HDA	applications.	

ARCADIA	annotations	are	 functionally	 grouped	 in	 five	 categories	according	 to	 the	nature	of	 the	business	

logic	 that	 is	 bound	 to	 the	 usage	 of	 the	 annotation.	 These	 categories	 include	 component	 management,	

configuration	 management,	 management	 of	 performance	 metrics,	 management	 of	 lifecycle,	 and	

management	of	dependencies.	For	each	of	these	categories	the	exact	business	logic	is	discussed.	

Regarding	the	component	management,	a	proper	annotation	undertakes	the	task	to	create	the	appropriate	

artefact	and	store	it	in	the	ARCADIA	repository	in	order	to	be	used	later	on	during	the	creation	of	a	service	

graph.	 Regarding,	 the	 configuration	management	 aspects,	 the	 annotations	 are	 used	 in	 order	 to	 create	 a	

fully	functional	REST	thin-layer	on-top	of	the	component	that	undertake	the	task	of	getting	or	setting	the	

configuration	 parameters.	 It	 should	 be	 clarified	 that	 getting	 is	 only	 meaningful	 in	 case	 of	 mutable	

parameters.	 	As	 far	as	performance	metrics	are	concerned,	a	proper	annotation	 is	 responsible	 to	expose	

developer-defined	 measurements	 per	 each	 metric.	 These	 measurements	 are	 propagated	 to	 the	 Smart	

Controller	that	is	responsible	for	the	policy	enforcement.	

Finally,	regarding	lifecycle	management,	ARCADIA	annotations	implement	pass-through	functions	that	are	

required	by	the	Smart	Controller	in	the	frame	of	a	service	graph	deployment.	A	service	graph	deployment	

entails	a	specific	boot	sequence	protocol	that	requires	uniform	interaction	with	all	parts	of	the	graph.	An	

analogous	 REST	 thin-layer	 that	 is	 auto-generated	 provides	 the	 required	 uniform	 interaction.	 The	 same	

stands	 true	 regarding	 the	 exposure	 and	 the	 binding	 of	 the	 interfaces	 that	 a	 component	 may	 perform.	

ARCADIA	annotations	can	be	used	in	any	IDE	environment.	However,	in	the	frame	of	the	project	a	specific	

web-based	IDE	will	be	provided	that	will	perform	several	types	of	validation	on	the	ARCADIA	components.	

	

	

	
30/	32	

	
	

References	
[1] Arcadia	project,	D2.2	-	ARCADIA	Context	Model,	Available	Online:	http://www.arcadia-

framework.eu/wp/documentation/deliverables/		

[2] Arcadia	project,	D2.3	-	ARCADIA	Architecture,	Available	Online:	http://www.arcadia-
framework.eu/wp/documentation/deliverables/		

[3] Arcadia	project,	D3.1	-	Smart	Controller	Reference	Implementation	

[4] Arcadia	project,	D4.2	-	Description	of	the	Applications’	Lifecycle	Management	Support,	Available	
Online:	http://www.arcadia-framework.eu/wp/documentation/deliverables/	

[5] M.	Dalmau,	P.	Roose,	S.	Laplace,	“Context	Aware	Adaptable	Applications	-	A	global	approach,”	IJCSI	
International	Journal	of	Computer	Science	Issues,	Vol.	1,	2009	

[6] ETSI,	Network	Function	Virtualization,	Online:	http://www.etsi.org/technologies-
clusters/technologies/nfv		

http://www.arcadia-framework.eu/wp/documentation/deliverables/
http://www.arcadia-framework.eu/wp/documentation/deliverables/
http://www.arcadia-framework.eu/wp/documentation/deliverables/
http://www.arcadia-framework.eu/wp/documentation/deliverables/
http://www.arcadia-framework.eu/wp/documentation/deliverables/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

	

	
31/	32	

	
	

Annex	I	–	Sample	Annotated	Component	
package eu.arcadia.sample;

import eu.arcadia.annotations.*;

import org.springframework.boot.SpringApplication;

@ArcadiaComponent(componentname = "URL Shortener",componentversion = "1.1.0",componentdescription =
"Make a long URL short, easy to remember and to share.",tags={"url-shortener","server"})

@ArcadiaMetric(name="hashedURLs",description = "Total number of shrinked URLs",unitofmeasurement =
"integer",valuetype = ValueType.SingleValue,maxvalue = "2147483648",minvalue = "0",higherisbetter =
false)

@ArcadiaMetric(name="averageProcessingTime",description = "URL hashing algorithm
performance",unitofmeasurement = "msec",valuetype = ValueType.SingleValue,maxvalue = "6000",minvalue
= "1",higherisbetter = false)

@DependencyExport(CEPCID = "URLSHORTENER_REST_API",allowsMultipleTenants = true)

@ArcadiaConfigurationParameter(name = "hashLength",description = "Defines the length of the hash
representing the shrinked URL",parametertype = ParameterType.SingleValue,defaultvalue = "7",
mutableafterstartup = false)

public class URLShortener {

 /*

 ArcadiaConfigurationParameter setter/getter

 */

 public static void setHashLength(String length){

 //application logic

 System.setProperty("URLShortener.hashLength",length);

 }

 public static String getHashLength(){

 //application logic

 return System.getProperty("URLShortener.hashLength");

 }

 /*

 ArcadiaMetrics (getters only)

 */

 public static String getHashedURLs(){

 //application logic

 return "1";

 }

 public static String getAverageProcessingTime(){

 //application logic

 return "1";

 }

 /*

	

	
32/	32	

	
	

 Component Lifecycle Management

 */

 @LifecycleInitialize

 public static void init(){

 System.setProperty("server.port",Application.defaultPort.toString());

 System.setProperty("URLShortener.hashLength",Application.defaultHashLength.toString());

 }

 @LifecycleStart

 public static void start(){

 new SpringApplication(Application.class).run();

 }

 @LifecycleStop

 public static void stop(){

 }

 /*

 DependencyExport-related methods (for URLSHORTENER_REST_API)

 */

 public static String getUri(){

 return Application.defaultUri;

 }

 public static String getPort(){

 return Application.defaultPort.toString();

 }

 /*

 Handle the bidning of the required MongoDB component (set application-specific properties etc.)

 */

 @DependencyBindingHandler(CEPCID = "MONGODB_CONNECTION")

 public void bindMongoDB(String ecepid, String json){

 }

}

