B Ref. Ares(2016)4468092 - 17/08/2016

HORIZON H2020-ICT-2014-1
Objective ICT-09-2014: Topics and Methods for Software Development

A novel reconfigurable by design highly distributed applications
development paradigm over programmable infrastructure

ARCADIA

A novel reconfigurable by design highly distributed applications
development paradigm over programmable infrastructure

D3.3 — Integrated Smart Controller Implementation v1

Editors: Panagiotis Gouvas, Anastasios Zafeiropoulos (UBITECH)

Costantinos Vassilakis, Eleni Fotopoulou (UBITECH), M.
Repetto (CNIT), N. Koutsouris (WINGS), T. Quang (TUB), J.
Sterle (UL), S. Siravo (MAGGIOLI), G. Kioumourtzis

Contributors: (ADITESS), L. Porwol (NUIG)
Date: 17 August 2016

Version: 1.0
Status: Final

Work Package: WP3—Smart Controller Reference Implementation

Classification: Public

E ‘Anovel reconfigurable by design highlydisributed applications
o evelopment paradigm over program frastructure

D3.3 - Integrated Smart Controller Implementation v1

ARCADIA Profile
Grant Agreement No.: 645372
Acronym: ARCADIA
Title: A NOVEL RECONFIGURABLE BY DESIGN HIGHLY DISTRIBUTED APPLICATIONS
DEVELOPMENT PARADIGM OVER PROGRAMMABLE INFRASTRUCTURE
URL: http://www.arcadia-framework.eu/
Start Date: 01 January 2015
Duration: 36 months
Partners

fif

Insight Centre for Data Analytics,

NUI Galway . . .
2 M OF Gaillimh National University of Ireland, Galway

SINTEF Stiftelsen SINTEF

1 E Technische Universitit Berlin

Consorzio Nazionale Interuniversitario

(c]nl [L lt per le Telecomunicazioni

Univerza v Ljubljani

Univerza v Ljubljani

£:f UBITECH

... ubiquitous solutions

GRUPPO

WINGS ICT Solutions Information &
Communication Technologies EPE

MAGGIOLI SPA

ADITESS Advanced Integrated
Technology Solutions and Services Ltd

Ireland

Norway

Germany

Italy

Slovenia

Greece

Greece

Italy

Cyprus

2/26

SARCADIA

D3.3 - Integrated Smart Controller Implementation v1

Document History

Version Date Author (Partner)
0.1 15 June 2016 P. Gouvas, A. Zafeiropoulos
(UBITECH)
0.2 29 June 2016 P. Gouvas, A. Zafeiropoulos, C.
Vassilakis, E. Fotopoulou
(UBITECH)
0.3 29 July 2016 M. Repetto (CNIT), C. Vassilakis,

A. Zafeiropoulos (UBITECH), N.
Koutsouris (WINGS), T. Quang
(TUBY), J. Sterle (UL), S. Siravo
(MAGGIOLI), G. Kioumourtzis

(ADITESS), L. Porwol (NUIG)

0.4 10 August 016 G.Kioumourtzis (ADITESS)
1.0 17 August 2016 = Panagiotis Gouvas (UBITECH)

Remarks
Added table of contents
Added executive summary
Added description of components

Updated description of components
Added introduction and conclusion
Finalised formatting

Internal review
Finalised document

| 3/26

FARCADIA

D3.3 - Integrated Smart Controller Implementation v1

Executive Summary

ARCADIA aims to provide a novel development paradigm needed to take advantage of the emerging
programmability of the cloud infrastructure, and hence develop reconfigurable-by-design applications
that support high performance, scalability, failure prevention and recovery, and in general self-
adaptation to changes in the execution environment. The proposed framework relies on the development
of an extensible Context Model which will be used by developers to produce annotated source-code and
generate distributed applications as service chains of application tiers and network functions containing

meaningful semantics. A Smart Controller responsible for on-boarding the HDAs is undertaking the tasks
of translating annotations to optimal infrastructural configuration. Such a controller is enforcing an
optimal configuration to the registered programmable resources and is pro-actively adjusting the
configuration plan based on the Infrastructural State and the Application State to meet objectives and
apply policies. Driving a distributed application through its entire lifetime proves highly beneficial for all
stakeholders since the synergy of the introduced applications’ re-configurability and the underlying
infrastructure’s programmability, facilitates the development of new fine-grained strategies able to fulfil
new and complex requirements.

This deliverable describes the implementation of the first integrated version of the ARCADIA Smart
Controller. The deliverable consists of a short description of the development activities and
implementation status, along with the source code of the integrated version of the Smart Controller. It is
intended for readers with experience in cloud computing and software engineering, as well as, familiarity
with the initial architecture design.

It should be noted that the current version of the ARCADIA Smart Controller is going to be used for the
first round of implementation of the ARCADIA use cases in WP5, while a final version of the ARCADIA
Smart Controller is envisaged to be provided by M24 of the project.

| 4/26

SARCADIA

D3.3 - Integrated Smart Controller Implementation v1

1 INtroducCtioN... s ——————————————————— 7
1.1 PUrpOSe QNd SCOPE ...iuiuimrmisisisisssssssisisissssssssssssssssasssasssssssssasssssssssasssssssssssasssasssssssasssasssssssasasasssssasssssasasass 7
1.2 Relation with other WPS ... 7
2 The ARCADIA FrameworK.......mmmssssssssssssssssssssssssssssasss 8
3 Integrated version of SMART CONIroOllernncnnssnssssssssssssssssssssssssssssssnsnss 9
3.1 Short Description of each Smart Controller Module ... 10
3.2 Overlay Networking MOdUIe........coummmmmsmnmsmsmsmsmsmsmsses 17
T S 0 1 T L1 1] 0 41 25
LI 2] =3 (1= 1 Lol 26
Figure 1 — ARCADIA FrameWOTK OVEIVIEWcceerereesesesseessseesssesssesssssssessssessssessssssssssssssssssessssassssassssssssssssssssssessssassanes 8
Figure 2 - Overall components of the 0rChESTIAtOL ... e eereereerseereees e seesssesssessesss s ssssssssesssssssenes 10
FIGUIE 3 — AGENT MOAUIE......ceeeeeeereeereesseeseeeseeesseessseesssesssses s eesseess e s s s s s R R e E s 11
L Tea DD AN 0N o LoT =N U0) o1 D0 =) oo) (1 =) o 11
Figure 5 — AVailable ANNOTAtIONS. ... cceeeeeeeeeeeeeseesets st sesssesssesssesssessssssse s sessesss s sss s as s as s as s bbbt 12
Figure 6 - Automated Generation of Agent BUSINESS LOZIC ..courerereerneeuneesieseeseessesssessessssessesssesssssssssssesssssssesns 12
FIgUIE 7 — APL defiNItIONS oo ettt es et ss s ss s ss s s s s s s s s s 13
Figure 8 — Smart Controller ENTIY POINt...... e esssesssessesssessesssssssesssssssesssssssesssssssssssssssesas 13
Figure 9 - Policy ENforcement ENGINEeeeneeeseeseesseesssesssssssessessssessssesssssssssssssssssssssssessssesssssssasssssssesseses 14
Figure 10 — [2aS AdaPLErs’ MOAUIE ... eeeeeeeeeeseerseessseseeessesss e ssseesse s sssssss s ssses s s ss s s st s ssssssenes 15
Figure 11 — COre OrCheStrator LOGIC ..o e reeesreerseesseesseessessssessssessssesssssssssssssessssessssessssesssssssssssssessssessssessasessasessssssssenes 15
Figure 12 - Business Logic for three REPOSILOIIESoreceemeereereeseesseeessesesseesssesssesssesssssssssssssessssssssesssssesssssseees 16
Figure 13 — REST Layer of all MOAUIES.......coeercececece ettt sssessessssessessssss s ssssssse s sssse s sssesssssssasssssssesas 16
Figure 14 — Unikernel ManagemENt ... eueureeueesneeseessesseessesssssssesssssssesssssssasssssssesssssssasssssssesssssssesssssssasssssssasssssssesas 16
Figure 15 - General-purp0Se BUSINESS LOGICoucueueuerecereereciseeseesseessessesssessessssessesssssssesssssssssssssssesssssssssssssssssasssssesas 17
Figure 16 - Creation & initialization of an OOR VM instance for overlay networking - Part 1.................. 19
Figure 17 - Creation & initialization of an OOR VM instance for overlay networking - Part 2ccccoceuu... 20
Figure 18 - Creation & initialization of an OOR VM instance for overlay networking — Part 3ccccneees 21
Figure 19 - Initialisation of a graph instance that represents a graph’s leaf - Part 1cconeennecrnneeneees 22
Figure 20 - Initialisation of a graph instance that represents a graph’s leaf — Part 2cconeenneenreeneees 23
Figure 21 - Initialisation of a graph instance that represents a graph’s leaf - Part 3 ... 24

| 5/26

SARCADIA

D3.3 - Integrated Smart Controller Implementation v1

API Application Programming Interface
CAE Cloud Applications Embedding
DoW Description of Work

HDA Highly Distributed Application
IaaS Infrastructure as a Service

JVM Java Virtual Machine

LXC Linux Container

NFV Network Function Virtualisation
NFVI Network Functions Virtualisation Infrastructure
NV Network Virtualisation

0s Operating System

PM Physical Machine

PoP Point of Presence

QoS Quality of Service

SDN Software Defined Networking
VDCE Virtual Data Centre Embedding
VLAN Virtual Local Area Network
VNE Virtual Network Embedding
VNF Virtual Network Function

VPN Virtual Private Network

WP Work Package

| 6/26

D3.3 - Integrated Smart Controller Implementation v1

1 Introduction

1.1 Purpose and Scope

This deliverable provides details with regards to the first version of the integrated ARCADIA Smart
Controller implementation, based on the development status at M18 of the project. It actually builds upon
the results presented at D3.1 [1], where the implementation status of the discrete components of the
ARCADIA Smart Controller were provided at M15 of the project. Further information concerning the
updated implementation status per component along with information concerning the overall
integration activities are given.

The ARCADIA Smart Controller is responsible for the deployment of distributed applications over the
available programmable infrastructure and their management during the execution time, triggering re-
configurations where required based on the defined optimization objectives and policies, on behalf of the
application developer and the services provider. It consists of a set of components covering deployment
aspects, optimisation aspects during deployment and runtime, policies enforcement during runtime,
management of the available compute, storage and network resources, application packaging,
networking and monitoring and analysis functionalities.

Upon the specification and the initial development of each component, a set of integration activities were
realised for providing the first version of the ARCADIA Smart Controller. This version supports a service
graph placement over programmable infrastructure along with the application of deployment and
runtime policies, the management of the available networking and computational resources and the
execution of set of monitoring and data management mechanisms. The set of components and
mechanisms developed are totally in line with the specification provided in D2.3 that regards the
description of the ARCADIA framework.

Given the type of the deliverable is “Other” and it mainly refers to the delivery of the developed software,
the current document is considered as accompanying material providing details with regards to the
source code development, the organization and management of the ARCADIA Github repository and the
main functionalities and interconnection interfaces provided per component. The current version is
going to be updated in order to produce the final version, following the release of the final integrated
Smart Controller implementation at M24 of the project.

1.2 Relation with other WPs

This deliverable is provided within the framework of WP3, however the provided results are going to be
exploited by other WPs and mainly by WP4 - “ARCADIA Development Toolkit” and WP5 - “Use Cases
Implementation and Evaluation”. In WP4, the ARCADIA Smart Controller is interconnected with the
developed Web IDE plugin, facilitating the automated submission of distributed applications developed
based on the ARCADIA software development paradigm to the ARCADIA Repository, where service
graphs may be instantiated and orchestrated -over the registered programmable infrastructure- by the
Smart Controller.

Furthermore, the release of the first version of the integrated Smart Controller is crucial for WP5
activities. Specifically, the first phase of implementation of the ARCADIA use cases that is going to be
completed by M24 of the project is going to be based on the first version of the Smart Controller. Feedback
from the deployments in the three ARCADIA use cases will be also provided to WP3 for
improvements/extensions towards the release of the final version of the integrated Smart Controller.

| 7/26

BARCADIA

D3.3 - Integrated Smart Controller Implementation v1

2 The ARCADIA Framework

In this section, we briefly recall the architecture of the ARCADIA Framework and the role of the Smart
Controller.

The ARCADIA framework consists of a set of components covering in a holistic way the development,
deployment and management of applications in runtime over the available programmable infrastructure.
A high level overview of the ARCADIA framework is provided in Figure 1 (including some implementation
specific indications). In the upper level of the framework, a set of components are made available for
designing, developing and deploying HDAs. The set of components are used by software developers
towards the development of applications following the ARCADIA software development paradigm, as
well as service providers towards the design of services graphs along with their mapping with policies.
In the middle level of the framework, the ARCADIA Smart Controller deploys the applications over the
available programmable infrastructure and manages the application during the execution time triggering
re-configurations where required based on the defined optimization objectives and policies, on behalf of
the application developer and the services provider. In the lower level of the framework, management of
the available compute, storage and network resources is realized along with establishment of the
required monitoring and signaling probes for the real-time management of the instantiated components
and links.

MICRO-SERVIVES DEVELOPMENT CONTEXT
REPOSITORY TOOLKIT MODEL
(ECLIPSE CHE) (JSR175)
SERVICE GRAPH PENVIGEIGRAEHISSE - N
S .J*_J

1
POLICY DEPLOYMENT
REPOSITORY & RUNTIME POLICY
EDITOR
DEPLOYMENT OPTIMISATION POLICIES
MANAGER ENGINE Leam ENFORCEMENT
(SOLVER, META-HEURISTICS) (EXPERT SYSTEM, DROOLS)

UNIKERNEL MONITORING &
BUNDLING ANALYSIS ENGINE
(SPARK, R)

PROGRAMMABLE RESOURCE MANAGER

EXECUTION
MANAGER

—

439 11

|—— SMART CONTROLLER

laas1 laas2

I L L LN
NETWORK

STORAGE Deployed Service Graph, Load Balancing & Overlay Networking
COMPUTE

Figure 1 — ARCADIA Framework Overview

| 8/26

D3.3 - Integrated Smart Controller Implementation v1

Following, we are providing more details with regards to the components included in the ARCADIA Smart
Controller. In more detail, the Smart Controller includes the following components: (i) the Deployment
Manager that is responsible for the complex task of undertaking the deployment model instance and
“translating” it into optimal deployment configuration taking under consideration the registered
programmable resources, the current situation in the deployment ecosystem and the applied policies;
(ii) the Optimisation Engine that proactively adjusts of the running configuration as well as reactively
triggers re-configurations in the deployment plan, based on measurements that derive from the
monitoring components of the Smart Controller (Monitoring and Analysis Engine) and the existing
policies as provided by the Policy Enforcement component. The ultimate goals of the Optimisation Engine
are two: a) zero-service disruption and b) re-assurance of optimal configuration across time; (iii) the
Policy Enforcement component which assures that the imposed policies on behalf of the Service Provider
are adhered across the applications operational lifecycle; (iv) the Execution Manager that is responsible
for the execution of the deployment plan based on the instantiation of the required components and the
links among them, according to the denoted service graph in the deployment script. The Execution
Manager is also responsible for implementing the monitoring mechanisms required per component and
service graph for the collection of the information required by the denoted monitoring hooks. Such
information is then provided to the Monitoring and Analysis Engine for further processing; (v) the
Programmable Resource Manager that exposes a specific interface where programmable resources are
registered and managed (reserved/released). Programmable resources can span from configured IaaS
frameworks, programmable physical switching/routing equipment, programmable firewalls, application
servers, modularized software entities (databases, HTTP proxies etc.). Allocation/Release of resources is
realised upon requests provided by the Deployment Manager; (vi) the Monitoring and Analysis Engine
that is responsible for collecting the required information -as defined by the monitoring hooks per
component and service graph- and supporting the extraction of insights and predictions upon analysis.
The considered software components per service graph are deployed in a multi-IaaS environment along
with the associated mechanisms for supporting signalling and measurement feeds. Monitoring feeds to
these mechanisms are provided based on information collected by the ARCADIA Agent that is included
within each ARCADIA component.

3 Integrated version of SMART Controller

The Smart Controller consists of several subcomponents that reflect the high level architecture that has
been thoroughly described. Although the nature of the deliverable is ‘other’, the purpose of this
deliverable is to provide a companion regarding the navigation to the Smart Controller source code. The
source code is organized using Maven! technology in order to assure the overall quality of the project.
According to this technology, each separate high level software ‘artefact’ is addressed as module. At
present, the Smart Controller consists of 15 artefacts. We will briefly discuss them in the following
section.

1 https://maven.apache.org/

| 9/26

SARCADIA

developm

D3.3 - Integrated Smart Controller Implementation v1

3.1 Short Description of each Smart Controller Module

Figure 2 depicts the overall components of the Smart Controller alphabetically sorted. The modules
‘sample-component-leaf and ‘sample-component-root’ will be relocated in the final version of the
controller; thus they will not be discussed.

P 471 commits L' @ branches AL 8 contributors

I
Branch: master = New pull request Create new file = Upload files Find file m

_i efotopoulou committed on GitHub Merge pull request #59 from ubitech/policyeditor Latest commit efeo346 7 days ago

i agent Monitoring implementation, undeploying functionality 10 days ago

[annotation-interpreter Metrics update 11 days ago

[annotation-libs Monitoring implementation, undeploying functionality 10 days ago

il api Monitoring implementation, undeploying functionality 10 days ago

i app add real service graph to undeployed service graphs 7 days ago

[expertsystem enable jms 14 days ago

il iaas-adapters Monitoring implementation, undeploying functionality 10 days ago

[iaas-management Monitoring implementation, undeploying functionality 10 days ago

I indexer Bump version to v0.3.0 4 months ago

[orchestrator Monitoring implementation, undeploying functionality 10 days ago

| repository Monitoring implementation, undeploying functionality 10 days ago

i rest-api fix conflict between policy editory js libs and graph draw s libs 7 days ago

I sample-component-leaf Monitoring implementation, undeploying functionality 10 days ago

[sample-component-root Monitoring implementation, undeploying functionality 10 days ago
[scheduler Bump version to v0.3.0 4 months ago
i unikernel Component Registration + Unikernel generation 3 months ago
[util Bump version to v0.3.0 4 months ago
[E .gitignore Fixed Conflicts 4 months ago
[E CHANGELOG.md Updated CHANGELOG 4 months ago
[E] LICENSE Added LICENSE & months ago
[E] README.md Fixed Neodj issue 5 months ago
[E pom.xml Monitoring implementation, undeploying functionality 10 days ago

Figure 2 - Overall components of the orchestrator

The purpose of the ‘Agent’ module is to provide the thin-layer that wraps all Arcadia components in order
to make them interoperable with the controller. Therefore, the Agent is responsible to handle all signals
that relate to service graph deployment, service graph undeployment and policy enforcement. The Agent
interface and the signal handling business logic is provided to classes of this module as depicted on Figure
3.

The next module is the ‘Annotation Interpreter’. As already described in D3.1[1] and D3.2[2] one of the
most sophisticated features of the ARCADIA approach is the automatic creation of formal meta-models
regarding the ARCADIA components, the ARCADIA service graphs and the ARCADIA deployment models.
Automation is achieved through the specific module (Figure 4Figure 3). More specifically, this module is

| 10/ 26

Anovel
development paradigm o1

FARCADIA

D3.3 - Integrated Smart Controller Implementation v1

responsible to process a binary archive (that is submitted through the ARCADIA IDE) and create formal
models. Binary handling introspection techniques are used in order to achieve the goals of the module.

ubitech / arcadia-framework private @ Unwatch~ 28 S Star 0 Y¥Fork 0
{» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings

Branch: master » | arcadia-framework / agent / src/ main / java / eu / arcadia / agent / Create new file = Upload files ~ Find file History

nlykousas Monitoring implementation, undeploying functionality Latest commit 2adadbs 10 days ago

[El Agent.java Fixing grounding 17 days ago

[E1 SignalingHandler.java Monitoring implementation, undeploying functionality 10 days ago

Figure 3 - Agent Module

ubitech / arcadia-framework rrivate @ Unwatch -~ 28 A Star 0 YFork 0
¢{» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Eranch: master - Create new file = Upload files = Find file = History

arcadia-framework / annotation-interpreter / src / main / java / eu / arcadia / annotationinterpreter /

nlykousas Metrics update Latest commit cea2bbb 11 days ago
mczj Runtime introspection 5 months ago
[E) Annctationinterpreter.java Metrics update 11 days ago
[E) ArcadiaClassLoader.java Fixed classloader + agent improvements 15 days ago
[E ConfigurationWriter.java Fixed classloader + agent improvements

[E) Util.java Fixed classloader + agent improvements 15 days ago

Figure 4 - Annotation Interpreter

Moreover, the module ‘annotations’ provides all the definitions of the ARCADIA Annotations that can be
used during development. Since ARCADIA Annotations are JSR-250 Java annotations? they are formally
Java interfaces that follow a specific syntactic convention according to the aforementioned standard. At
present, 14 discrete annotations can be used as depicted on Figure 5.

2 https://www.jcp.org/en/jsr/detail?id=250

| 11/26

SARCADIA

e e s e D3.3 - Integrated Smart Controller Implementation v1

ubitech / arcadia-framework rrivate @Unwatch~ 28 & Star 0 YFork 0
¢» Code Issues T Pull requests 0 Wiki Pulse Graphs Settings
Eranch: master ~ Create new file = Upload files = Find file = History

arcadia-framework / annotation-libs / src / main / java / eu / arcadia / annotations /

nlykousas Monitoring implementation, undeploying functionality Latest commit 2ad4dbe 10 days ago
[E) ArcadiaComponent.java Various updates 3 months ago
[E) ArcadiaConfigurationParameter java Runtime introspection 5 months ago
[E) ArcadiaConfigurationParameters.java Runtime introspection 5 months ago
[E) ArcadiaMetric.java Runtime introspection 5 months ago
[E) ArcadiaMetrics java Agent Refactoring 2 months ago
[E) DependencyBindingHandler.java Annotation Interpreter + agentJson Helpers 4 months ago
[El DependencyExport.java Annotation Interpreter + agentJson Helpers 4 months ago
[E) DependencyExports.java Annotation Interpreter + agentJson Helpers 4 months ago
[E) DependencyResolutionHandler java Annotation Interpreter + agentJson Helpers 4 months ago
[E) Lifecyclelnitialize.java Annotation Interpreter + agentJson Helpers 4 manths ago
[E) LifecycleStart.java Annotation Interpreter + agentJson Helpers 4 months ago
[E LifecycleStop.java Annoctation Interpreter + agentJson Helpers 4 months ago
E) ParameterType.java Manitoring implementation, undeploying functionality 10 days ago
B ValueType.java Maonitoring implementation, undeploying functionality 10 days ago

Figure 5 - Available Annotations

Furthermore, beyond the automated generation of the modelling artefacts, that is driven by the
annotations and performed by the annotation interpreter, one of the crucial functionalities is the auto-
generation of a REST management interface on-top of each component that is deployed as depicted on
Figure 6.

L]

* " ubitech / arcadia-framework private @Unwatch~ 28 Star 0 YFork 0
¢» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master - Create new file = Upload files Find file = History

arcadia-framework / annotation-libs / src / main / java / eu / arcadia / agentglue /

nlykousas Fixed classloader + agent improvements Latest commit 8645747 15 days ago
1 uitil Fixed classloader + agent improvements 15 days ago
[E] Chaininginfo java Fixed classloader + agent improvements 15 days ago
[El Componentinfo java Fixed classloader + agent improvements 15 days ago
[El GroundedComponentinfo.java Fixing deployment procedure 22 days ago

Figure 6 - Automated Generation of Agent Business Logic

| 12 /26

Anovel
development paradigm o1

FARCADIA

D3.3 - Integrated Smart Controller Implementation v1

During the development of all modules the inversion of control (IOC) principle is heavily used. This
practically means that when a module depends to another module the dependency is declared using only
its interface. The real binding happens during runtime. This pattern totally decouples the module
development yet it raises one consideration; each module has to publish its interface to a common
module which is the API module (Figure 7).

ubitech / arcadia-framework private @ Unwatch- 28 S Star 0 YFork 0
<> Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master ~ = arcadia-framework / api / src / main / java / eu [arcadia / api / Create new file Upload files ~ Find file = History
nlykousas Monitoring implementation, undeploying functionality Latest commit 2ad4dba 10 days ago
i annotationinterpreter API key validation + refactoring 2 months ago
i iaasadapter Maonitoring implementation, undeploying functionality 10 days ago
| iaasmanagement Create laaSServiceProvider functionality 3 months ago
B orchestrator Manitoring implementation, undeploying functionality 10 days ago
i repository merge with master 14 days ago
Il unikernel Initial version of capstan wrapper 5 months ago

Figure 7 - API definitions

The next module is called ‘app’ and it constitutes the entry the point of the entire project (Figure 8). Itis
the module that is primarily executed in order to bootstrap the entire Smart Controller. The execution
context along with the initialization parameter binding is performed in the specific module.

ubitech / arcadia-framework rerivate @ Unwatch- 28 W Star 0 YFork 0
<3 Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings

Branch: master ~ arcadia-framework / app / src / main / java / eu / arcadia / app / Create new file Upload files = Find file = History
‘__” gtsiclis Added application list placeholders for undeployed service graphs Latest commit 311d1ev 10 days ago
i config Added application list placeholders for undeployed service graphs 10 days ago
[l controller Added application list placehaolders for undeployed service graphs

B main Added support for ResourceStatistics 3 months ago
B security/auth Fixed issue on User DAO 5 months ago

Figure 8 - Smart Controller Entry Point

| 13/26

SARCADIA

developm

D3.3 - Integrated Smart Controller Implementation v1

The next module is addressed as ‘expertsystem’ (Figure 9). As the name denotes, this component
encapsulates a formal expert system based on Drools3. This expert system is used in order to achieve
policy enforcement. In other words, ARCADIA policies are practically transformed in formal expert
system rules that are executed in the engine.

ubitech / arcadia-framework private @ Unwatch - 28 4 Star 0 YFork 0
¢» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master Create new file = Upload files = Find file = History

arcadia-framework / expertsystem / src / main / java / eu [arcadia / expertsystem /

_i efotopoulou enable jms Latest commit 9149dab 14 days ago
i Messaging Enable Jms to expert system. Publish generated actions to "RUNTIME_AC... 4 months ago
B config complete time window operation of drools. create tests with simple t a month ago
i facts complete time window operation of drocls. create tests with simple t a month ago
m rules/generation complete time window operation of drools. create tests with simple t a month ago
[E) RulesEngineApp.java enable jms 14 days ago
[El RulesEngineController.java complete time window operation of drools. create tests with simple t a month ago
[E) RulesEngineService.java complete time window operation of drools. create tests with simple t a month ago

Figure 9 - Policy Enforcement Engine

One of the major benefits of the Smart Controller is its ability to interconnect with multiple IaaS providers
(Figure 10). Resources from multiple providers may be registered and used towards the deployment
process. To do so, the service locator pattern has been used in order to decouple the IaaS-specific
implementation with the API of the IaaS interaction.

3 http://www.drools.org/

| 14 /26

SARCADIA

development paradigm o1

D3.3 - Integrated Smart Controller Implementation v1

ubitech / arcadia-framework private @Unwatch - 28 g Star 0 YFork 0
<» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master Create new file = Upload files = Find file = History

arcadia-framework / iaas-adapters / adapter-openstack / src / main / java [eu [arcadia / iaasadapters [openstack /

nlykousas Monitoring implementation, undeploying functionality Latest commit zad4dba 10 days ago

I transferobjects Monitoring implementation, undeploying functionality 10 days ago

[E] OpenstackAdapterjava Monitoring implementation, undeploying functionality 10 days ago

[E] OpenstackAdapter2 java Monitoring implementation, undeploying functionality 10 days ago

[E] TestOpenstackAdapter.java OpenStack4. initial integration 24 days ago

Figure 10 - IaaS Adapters’ module
The core module of the Smart Controller is the ‘orchestrator’ (Figure 11). These modules contains the
implementation of the entire orchestration logic that is required in order to perform service graph
management.

ubitech / arcadia-framework private @Unwatch~ 28 4 Star 0 YFork 0
<» Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master - Create new file Upload files Find file History

arcadia-framework / orchestrator / src / main / java [eu / arcadia / orchestrator /

nlykousas Monitoring implementation, undeploying functionality Latest commit zad4dbe 10 days ago

I messaging Manitoring implementaticn, undeploying functionality 10 days ago

i rest

[El MessagingConfiguration.java

Maonitoring implementation,
Maonitoring implementation,

Maonitoring implementation,

undeploying functionality
undeploying functionality

undeploying functionality

10 days ago
10 days ago

10 days ago

El MetricScheduler.java

[l ServiceGraphDeploymenthanager.java Monitoring implementation, undeploying functionality 10 days ago

[ServiceGraphDeploymentSignalHandlerj... Monitoring implementation, undeploying functionality 10 days ago

Figure 11 - Core Orchestrator Logic

As already described in D3.1[1] and D3.2[2], the ARCADIA Smart Controller requires three different types
of persistency engines in order to be fully operational. More specifically, it requires one relational
database for transaction-intensive data, one NoSQL repository for scalable storage of “write-once/read-
many” data and one graph database for efficient querying of graphs. All business logic that relates to these
repositories is provided in the repository module (Figure 12).

| 15/26

D3.3 - Integrated Smart Controller Implementation v1

SARCADIA

development paradigm o1 wre

ubitech / arcadia-framework private @Unwatch- 28 4 Star 0 YFork 0
¢ Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings

Eranch: master - Create new file Upload files = Find file = History

arcadia-framework / repository / src / main / java / eu [arcadia / repository /

nlykousas Monitoring implementation, undeploying functionality Latest commit zadadbs 10 days ago

11 days ago

i mongo Metrics update

B neodj Monitoring implementation, undeploying functionality 10 days ago
i relational Create laaSServiceProvider functionality 3 months ago
il solr Added search query functionality 3 months ago

Figure 12 - Business Logic for three Repositories

In an analogous manner with the 'api' module, which encapsulates all the public exposable interfaces of
all modules (that can be chained) the rest module (Figure 13) encapsulates the REST business logic of

all modules.

ubitech / arcadia-framework private @Unwatch~ 28 4 Star 0 Y Fork 0
¢> Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master - | arcadia-framework / rest-api / src / main / java / eu / arcadia / rest / Create newfile = Upload files Find file History

ﬁ efotopoulou fix conflict between policy editory js libs and graph draw s libs Latest commit e383ca14 7 days ago

5 months ago

i global Added support for APl Keys
Bl repository fix conflict between policy editory js libs and graph draw js libs 7 days ago
I response Added registration functionality 5 months ago

Figure 13 - REST Layer of all modules
Finally, the last two modules are the ‘unikernel’ (Figure 14) and the ‘util’ (Figure 15). On the one hand,
the ‘unikernel’ encapsulates all business logic that related to the lifecycle management of the unikernels
i.e. their generation and their instantiation/management. On the other hand, the ‘util’ module
encapsulates business logic that is considered horizontal (e.g. security handling).

ubitech / arcadia-framework private @ Unwatch - 28 4 Star 0 YFork 0
<> Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings

Eranch: master - Create new file Upload files Find file = History

arcadia-framework / unikernel / src / main / java / eu / arcadia / unikernel /
Latest commit 6fsb177 on Apr 25

nlykousas Component Registration + Unikernel generation

i uitil Component Registration + Unikernel generation 3 months ago

[E) UnikernelGenerator.java Component Registration + Unikernel generation 3 months ago

Figure 14 - Unikernel Management

| 16/26

D3.3 - Integrated Smart Controller Implementation v1

ubitech / arcadia-framework private @ Unwatch~ 28 JStar 0 YFork 0
<3 Code Issues 7 Pull requests 0 Wiki Pulse Graphs Settings
Branch: master » arcadia-framework / util / src / main / java / eu / arcadia / util / security / Create new file Upload files Find file = History
Mpgouvas First version of laasS interaction logic Latest commit 6e7ecef on Feb 25
auth First version of 1aas interaction logic 5 months ago

E] DefaultRSAKeypairGenerator.java Modif
E) JWTSecurityHandler java Mc

E] RSAKeyMaker.java Modif

[E) SignatureMNotVerifiedException.java Modified JWT based

Figure 15 - General-purpose Business Logic

3.2 Overlay Networking Module

Given that the implementation of overlay networking part is not detailed in D3.1 (it was not available at
that time), we provide some further information regarding the supported functionalities and the
implementation details.

Establishment of communication among nodes in a multiple-laaS environment and support of routing
among them is based on an overlay routing approach, based on the configuration and adaptation of the
Open Overlay Router (OOR) [3]. The OOR project aims to deliver a flexible and modular open-source
implementation to deploy programmable overlay networks. It leverages on encapsulating overlay-
specific packets into underlay-compatible packets at the edges of the instantiated overlay and route them
over the physical underlying infrastructure. In order to do so, it maps overlay identifiers to underlay
locators and keeps those mappings updated over time. In the current version, OOR uses:

- LISP *protocol for the control-plane (e.g. mapping retrieval and updating, etc);
- NETCONF5/YANGS® for the management-plane (e.g. overlay identifiers provisioning, etc);
- can use both LISP and VXLAN-GPE headers for encapsulation.

Overlay network creation
Before placing a service graph, an OOR instance must be created and initialized in order to establish the
underlying logical connections. Therefore, in each involved IaaS, at least one OOR instance must be
operational so as to pass internal traffic. The initialisation steps include:
1. the creation of a new tenant or the use of an existing one (see Figure 16- method createTenant());
2. the creation of a new network or the use of an existing one (see Figure 16 - method
createNetwork());

4 Locator/ID Separation Protocol (LISP), http://www.cisco.com/c/en/us/products/ios-nx-os-
software/locator-id-separation-protocol-lisp/index.html

5 https://tools.ietf.org/html/rfc6241
6 https://tools.ietf.org/html/rfc6020

| 17/ 26

SARCADIA

D3.3 - Integrated Smart Controller Implementation v1

the creation of a new subNet and its addition to the above network or the use of an existing one
(see Figure 17 method createSubNet());

the creation of a new logical router, or the use of an existing one, for [aaS central management
purposes (see Figure 17 method createLogicalRouter());

the creation of a new security group, or the use of an existing one, so as to create traffic rules for
our instances (see Figure 18 method createSecGroup());

the creation of the OOR instance and the update of its configuration file to include the above
created subnetworks and MS/MR address or the use of an existing instance (see Figure 18
method createVMInstance()).

As soon as the instance is created and the communication links are updated, the overlay network has
been established.

Service Graph Placement

For the service graph placement, a set of further steps are required. These steps include the initialization
of a finite number of unikernel instances that represent the actual implementation of the various services
constructed in Arcadia's’ graph editor, as follows:

1.
2.
3.

the initialization of the grounded service (see Figure 19 method initialize());

the creation of the vm instance (see Figure 19 method createVMInstance());

the upload of the required payload to the created instance-overlay net (see Figure 20 method
uploadPayLoadToVM());

the initialization of the Arcadia’s vm signaling protocol (see Figure 20 method
initializeVMSignalingHandlerAgent() and Figure 21method startSignalingProtocol()).

| 18/ 26

sd OOR Creation part_1]

T

cC

SER

Graph
Placement

Handler

— placeGraph(xml) -»

laaS Neutron

Handler (REST

Network

API

— create Tenant{name)

if true
return(201%)
=- else false
return(400 or 401 %)

e S return(break_program_flow, error type)

| createNetwork(name,
admin_state_up)

if true return(201%)
else false

return(400 or 401 *)_

——fm——————— return(break_program_flow, error type)

if false callErrorHandler(laaS error log)

laaS NOVA
Instance Creator

Handler

Error Handler

if false callErrorHandler{laaS error log)

Figure 16 - Creation & initialization of an OOR VM instance for overlay networking - Part 1

FARCADIA

lrconiguabioby s highy it
developmentp: ver programmableinf

D3.3 - Integrated Smart Controller Implementation v1

sd OOR Creation part_2

Graph laaS Neutron laasS NOVA Error Handler
Placement Network Instance Creator|

Handler Handler (REST Handler
' API
an createSubNet
(network_id,
ip_version,
cidr)

oF

C
wn
m
a

if true return(201)
else false
return(400
= —— or 401 -l
or 403
or 404
or 409 #)

if false callErrorHandler(laaS error log) >

] —+—————————return(break_program_flow, error type) -—————————————————————— \—J

createlLogicalRouter
(name,
external_gateway_info,
network_id
I enable_snat, »—
external_fixed_ips,
subnet id,
ip,
admin_state_up)

if true
return(201)
else false
return(400 or 401%)

-

Figure 17 - Creation & initialization of an OOR VM instance for overlay networking - Part 2

‘ 20/ 26

SARCADIA

igm over programms

D3.3 - Integrated Smart Controller Implementation v1

sd OOR Creation part_3]

Graph laaS Neutron laaS NOVA Error Handler
Placement Network Instance Creator
USER Handler Handler (REST Handiler
[] i API
1

if false callErrorHandler(laaS error log)

e ———-return(break_program_flow, error type) —————=—4-—————————————~ -

| _createSecGroup(name,
description)

if true return(201%)
= else false
return(400 or 401 *)

if false callErrorHandler(laaS error log) »

= — return(break_program_flow, error type)-———————————————— e
|
|

|
createVMInstance(name,
imageRef,
flavorRef,
metadata)
|
|
|
if true return(201%)
O else false .
return(400 or 401 *)

Figure 18 - Creation & initialization of an OOR VM instance for overlay networking - Part 3

‘ 21/26

HARCADIA

D3.3 - Integrated Smart Controller Implementation v1

=

r

sd GraphVM part_1

Signaling
Handler Agent

Error Handler

Service Graph Deployment laaS NOVA
Controller LifeCycle Instance Creator
listener Handler
create : REST API
— Grounded I |n|t|aI|ZE(i
Graph() grounded !
Service o
GraphlD,
laaslinfo)
ftrue
return(0)
== else =
if false :
return(typeError) |
crealeVMInstance(
name,
imageRef, _
flavorRef, "
metadata)
ftrue retu m(202)
else false return(400,
e —- 500,..0r503 ————————— I
or 400 or 401 or 403 !
or 404 or 404*%) i
: if false callErrorHandler(error log)
: i
i !
e e e -i'———— return{break_program_flow, error type)
i !
| |
i |
i |
l I

Figure 19 - Initialisation of a graph instance that represents a graph’s leaf - Part 1

22/26

FARCADIA

el recontgurale by design gl it
development paradigm over programmable i

D3.3 - Integrated Smart Controller Implementation v1

sd GraphVM part_2

Q Service Graph Deployment laaS NOVA Signaling Error Handler
Controller LifeCycle Instance Creator Handler Agent
User T listener Handler
(REST AP

|
uploadPayloadToVM(
SignalingAgent,
DeveloperComponent,
metadata)

if true return(0)
S else if false
return(typeError)

if false callErrorHandler(error log) »

- return(bre ak_program'_ﬂ oW, error type) -—=

initializeVMSignalingHandlerAgent(VMinfo)

if true return(0)
- - elseiffalse L -
return(typeError)

Figure 20 - Initialisation of a graph instance that represents a graph’s leaf - Part 2

‘ 23/26

D3.3 - Integrated Smart Controller Implementation v1

sd GraphVM part_3
Service Graph Deployment laaS NOVA Signaling Error Handler

Q Controller LifeCycle Instance Creator Handler Agent ,
et — listener Handler |
T REST API !
E if false callErrorHaﬁdler(error log) >

! |

i !
T: ———return(break_program_flow, error type) - .
stanSig'naIingProtocol(messagelnformation) N i
| ftrue return(0) i
| elseiffalse —-- !
| return(typeError) |
; if false callErrorHandler(error log) >

| i

i I
r————return(break_program_flow, error type) ,
fno Error i |
then return i !
lk=- control =+ ! :
tomain L | |
program E i !
b | | |
| | i |
! i H :

Figure 21 - Initialisation of a graph instance that represents a graph’s leaf - Part 3

‘ 24 /26

4 Conclusions

This deliverable described the first version of the implementation of the integrated ARCADIA Smart
Controller. Upon a short revision of the ARCADIA framework, the Smart Controller componentization
along with the functionalities that have to be supported per component are provided. Following,
implementation details and description of the current development status is given, based on the source
code organization in the ARCADIA Github repository. Since the main content of the deliverable regards
the developed software, access details to the available source code are provided.

The provided integrated Smart Controller implementation is going to be used in WP5 towards the
instantiation of the ARCADIA use cases. In each use case, usage of part or all the Smart Controller
components is envisaged. Upon the realisation of the first round of use cases implementation, useful
feedback is going to be provided to WP3 for updating/extending the ongoing Smart Controller
implementation.

HARCADIA

D3.3 - Integrated Smart Controller Implementation v1

5 References

[1] Deliverable D3.1 - “Implementation of the discrete components of the Smart Controller V1”, ARCADIA
H2020 Project.

[2] Deliverable D2.3 - “”, ARCADIA H2020 Project, Available Online: http://arcadia-framework.eu/.
[3] Open Overlay Router, Available Online: http: //www.openoverlayrouter.org/

| 26/26

